Algorithm
Design and Analysis

Dynamic Programming a

e Learn about (maybe review)

* Understand the key elements:
* Memoization
* Optimal Substructure

* Overlapping subproblems

* Practice a lot of DP problems!

You can climb up the stairs in increments of 1 or 2 steps.
How many ways are there to jump up n stairs?

Could we solve this problem in terms of ?

#'waﬂs {"o (/|mu{> Nn—I SRfS A n/ﬁ’)
X Hame R clmb N-2 Shps 7 e

function stairs(int n) {
if (n <= 1) then return 1
else {
let waysToTakelStep = stairs(n-1)
let waysToTake2Steps = stairs(n-2)
return waysToTakelStep + waysToTake2Steps

Issue? Exponentially many recursive calls!!

\(

apl. VO
dictionary<int, int> £ Key Idea:
Don’t solve the same problem

function stairs(int n . .
() 1 twice! Store the result and reuse it!

if (n <= 1) then return 1

if (n not in) {

memo [n] = shurs (h-1) +skrhs (n-2) Note:
} The memo dictionary does not
return [n] need to be a hashtable! What

} should it be in this case?

* We could solve the stairs problem by using solutions to smaller
instances of the stairs problem

stairs(n) = stairs(n-1) + stairs(n-2)

Key Idea:
We say that a problem has optimal substructure if the optimal
solution to the problem can be derived from optimal solutions
to smaller instances (called) of the problem.

* The DP implementation of stairs was faster because each subproblem
was solved only once instead of exponentially many times

stairs(n) = stairs(n-1) + stairs(n-2)

Key Idea:
Overlapping subproblems are subproblems that occur multiple
(often exponentially many) times throughout the recursion tree.
This is what distinguishes DP from ordinary recursion.

2.

3.

4.

6.

Identify a set of optimal subproblems

e Write down a clear and unambiguous definition of the
subproblems.

Identify the relationship between the subproblems

* Write down a recurrence that gives the solution to a problem in
terms of its subproblems

Analyze the required runtime

e Usually (but not always) the number of subproblems multiplied
by the time taken to solve a subproblem.

Select a data structure to store subproblems

e Usually just an array. Occasionally something more complex

Choose between bottom-up or top-down implementation
Write the code!

The Knapsack Problem

Definition (Knapsack): Given a set of n items, the i'" of which has
size s; and value v;. The goal is to find a subset of the items whose
total size is at most S, with maximum possible value.

Al B|C|D|E|F| G
Value | 7 | 9 | 5 |12 |15] 6 | 12 S =15
Size | 3| 4| 2|6 | 7| 3|5

A | B | C | D | E G
Value | 7 | 9 5 |12 | 15 12
Size 3 4 2 6 / 5

Issue:

* How do we know whether to include a
particular object X?

* We don’t know in advance, so

and pick best one!

Optimal substructure:

* Every object is either included or
not included

e If anitem X is included, the
remaining S — Size(X) space is filled
with some subset of the remaining
items

* This is just a smaller instance of the
knapsack problem!!

{\/(m%

Vadne of best subset o &l--R3

WA Size

<

N

K

c

e f k=D

vesy=< VI B) PSr B
movs (V (k-1 8), L'R-sk)+\/k>
\ —
Key Idea:

We could not know in advance whether to include the it! item or
not, so we tried both possibilities and took the best one.

Analysis: Knapsack can be solved in O(nS) time

N=S swqah/é(w.g

O fime

S OCHS) d‘l—W\e,.l

Max-weight independent set
In atree (Tree DP)

Definition (Independent set): Given a tree on n vertices, an independent set is a subset of the
vertices S € V such that none of them are adjacent.

Each vertex has a non-negative weight w,,, and we want to find the maximum possible weight
independent set.
Optimal substructure: @

e A solution either includes the root or does not include the root

* If theroot is chosen, the remaining solution is an independent
set of the remaining vertices, excluding the root’s children

* Each child/grandchild subtree is just another smaller instance of -V
the MWIS-in-a-tree problem!!

W (r) = wodue d MwiS g Subree pted ar ~

g = WCM) ANt use. V-
W& Childearn (V)
W (v) = max <
o > Wlw) + W Use V-
me Ge(r)
-
Again:

We could not know in advance whether to include the root or not,
so we tried both possibilities and took the best one!

Theorem: MWIS on a tree can be solved in O(n)!!

v-EV

- n -+hn

= 0(n)

Longest Increasing
Subseqgquence

Definition (LIS): Given a sequence of n numbers a4, a,, ..., a,, find
the length of a longest strictly increasing subsequence.

* Note: A subsequence does not have to be contiguous

[
|
|
(
[

10 11 17 | 15

N
(=
IS
W

I
|

ll

0
T — =

ohin g

Optimal substructure:
* An LIS ending with the element 15 extends the LIS that...

_ey\MbaﬁprmftBMOi (S
-k whe st (ol Han IS

N\ = (emgth LIS endn wuh A
{ L 13 (c) (n?usl' mobulo.“dai) L

Writing a Recurrence
(D

LIS = < max LIS(j)4 |
j <L
QA <Ay

N

Answer: mox L(S(i)

c=0

21

LIS(3) = 1+ max LIS(j)
a;<a;

+ Naive runtime: () (n?)

e Can we do better?

* This recurrence is taking the

* Do we know a way to do this more efficiently??

A:

SegTree:

LIS(?J) =1+ _m%)_c LIS(j)
'a§<ai;
l
O 4|3 (1011 17 15
| 122 | 3| 4| &5

* Big idea: Solve the subproblems in a

(LS (¢)

23

function LIS(list A): OC”)03 g)

n = length(A)
results := SegTree(array of n+l 0’s)
sortedByVal := sorted list of (val, index) pairs

for (val, index) in sortedByVal:
answer = sl . Romge Max (0;070(2)() + I

Qt&wMS.;Aﬂ%jh(rthUX,canawwﬁ

return readk Range Max (0, f“")

* Breaking a problem into subproblems is hard.

Can | use the first k elements of the input?

Can | restrict an integer parameter (e.g., knapsack size) to a smaller value?
On trees, can | solve the problem for each subtree? (Tree DP)

Can | solve the problem for a subset of the input ()

Can | keep track of more information ()

e Trya“ ¥ approach.
* Make one decision at a time and recurse, then take the best thing that results.
* Can think of this as memoized backtracking

e Can | use a clever data structure to speed up the recurrence (SegTree DP!)

* Complexity analysis is often just subproblems X time per subproblem
* But sometimes its harder and we must do some more analysis

	Slide 1: Algorithm Design and Analysis
	Slide 2: Roadmap for today
	Slide 3: Starter example: Counting steps
	Slide 4: Implementation #1
	Slide 5: Implementation #2
	Slide 6: When can we use DP?
	Slide 7: When can we use DP?
	Slide 8: “Recipe” for dynamic programming
	Slide 9: The Knapsack Problem
	Slide 10: The Knapsack Problem
	Slide 11: Identifying Optimal Substructure
	Slide 12: Writing a recurrence
	Slide 13: Analyzing the Runtime
	Slide 14: Max-weight independent set in a tree (Tree DP)
	Slide 15: Independent sets on trees (Tree DP)
	Slide 16: Writing a Recurrence
	Slide 17: Analyzing the Runtime
	Slide 18: Longest Increasing Subsequence
	Slide 19: Longest Increasing Subsequence
	Slide 20: Defining Subproblems
	Slide 21: Writing a Recurrence
	Slide 22: Analyzing Runtime
	Slide 23: Optimized LIS: SegTree DP!
	Slide 24: Optimized LIS: Pseudocode
	Slide 25: Take-home messages

