Algorithm Design and Analysis

Dynamic Programming

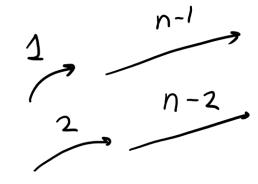
Roadmap for today

- Learn about (maybe review) dynamic programming
- Understand the key elements:
 - Memoization
 - Optimal Substructure
 - Overlapping subproblems
- Practice a lot of DP problems!

Starter example: Counting steps

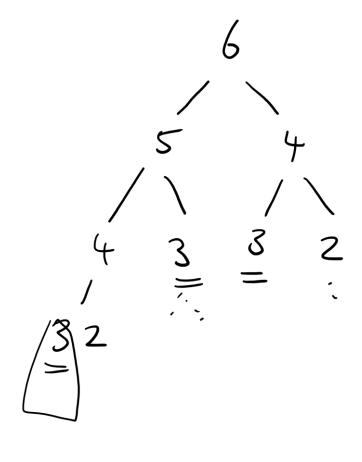
You can climb up the stairs in increments of 1 or 2 steps. How many ways are there to jump up n stairs?

Could we solve this problem in terms of smaller subproblems?



Implementation #1

```
function stairs(int n) {
  if (n <= 1) then return 1
  else {
    let waysToTake1Step = stairs(n-1)
    let waysToTake2Steps = stairs(n-2)
    return waysToTake1Step + waysToTake2Steps
  }
}</pre>
```



Issue? Exponentially many recursive calls!!

Implementation #2

```
dictionary<int, int> memo
function stairs(int n) {
  if (n <= 1) then return 1</pre>
  if (n not in memo) {
    memo [n] = stairs (n-1) +states (n-2) Note: Memo dictionary
  return memo[n]
```

£ 901. amous!

Key Idea: Memoization

Don't solve the same problem twice! Store the result and reuse it!

The memo dictionary does not need to be a hashtable! What

should it be in this case?

When can we use DP?

 We could solve the stairs problem by using solutions to smaller instances of the stairs problem

```
stairs(n) = stairs(n-1) + stairs(n-2)
```

Key Idea: Optimal substructure

We say that a problem has *optimal substructure* if the optimal solution to the problem can be derived from optimal solutions to smaller instances (called *subproblems*) of the problem.

When can we use DP?

• The DP implementation of stairs was faster because each subproblem was solved *only once* instead of *exponentially many times*

Key Idea: Overlapping subproblems

Overlapping subproblems are subproblems that occur multiple (often exponentially many) times throughout the recursion tree. This is what distinguishes DP from ordinary recursion.

"Recipe" for dynamic programming

1. Identify a set of optimal subproblems

 Write down a clear and unambiguous definition of the subproblems.

2. Identify the relationship between the subproblems

 Write down a recurrence that gives the solution to a problem in terms of its subproblems

3. Analyze the required runtime

• *Usually* (but not always) the number of subproblems multiplied by the time taken to solve a subproblem.

4. Select a data structure to store subproblems

- *Usually* just an array. Occasionally something more complex
- 5. Choose between bottom-up or top-down implementation
- 6. Write the code!

Often all that is required for a theoretical solution

Only required if the answer is not "array"

Mostly ignored in this class (unless it's a programming HW!)

The Knapsack Problem

The Knapsack Problem

Definition (Knapsack): Given a set of n items, the i^{th} of which has size s_i and value v_i . The goal is to find a subset of the items whose total size is at most S, with maximum possible value.

	A	В	C	D	E	F	G
Value	7	9	5	12	15	6	12
Size	3	4	2	6	7	3	5

$$S = 15$$

Identifying Optimal Substructure

	A	В	С	D	E	F	G
Value	7	9	5	12	15	6	12
Size	3	4	2	6	7	3	5

Issue:

- How do we know whether to include a particular object X?
- We don't know in advance, so try both choices and pick best one!

Optimal substructure:

- Every object is either included or not included
- If an item X is included, the remaining S – Size(X) space is filled with some subset of the remaining items
- This is just a smaller instance of the knapsack problem!!

$$V(k,B) = Value of best subset of $\{1...k\}$ with $V(k,B) = \{b,b\}$ Size $\{b,c\}$$$

Writing a recurrence

$$V(k,B) = \begin{cases} O & \text{if } k=0 \\ V(k-1,B) & \text{if } S_k > B \end{cases}$$

$$\text{max} \left(V(k-1,B), V(k-1,B-S_k) + V_k\right)$$

$$\text{Key Idea: Clever brute force}$$
We could not know in advance whether to include the i^{th} ite not, so we tried both possibilities and took the best one.

We could not know in advance whether to include the $i^{
m th}$ item or not, so we tried both possibilities and took the best one.

Analyzing the Runtime

Analysis: Knapsack can be solved in O(nS) time

Max-weight independent set in a tree (Tree DP)

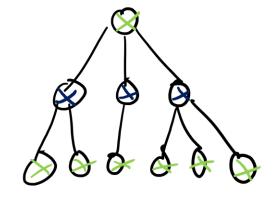
Independent sets on trees (Tree DP)

Definition (Independent set): Given a tree on n vertices, an independent set is a subset of the vertices $S \subseteq V$ such that none of them are adjacent.

Each vertex has a non-negative weight w_v , and we want to find the maximum possible weight independent set.

Optimal substructure:

- A solution either includes the root or does not include the root
- If the root is chosen, the remaining solution is an independent set of the remaining vertices, excluding the root's children
- Each child/grandchild subtree is just another smaller instance of the MWIS-in-a-tree problem!!



Writing a Recurrence

$$W(v) = \max \begin{cases} \sum_{u \in CL/Mon(v)} W(u) & don't use v \\ \sum_{u \in GC(r)} W(u) + W_{v} & use v \end{cases}$$

Again: Clever brute force

We could not know in advance whether to include the root or not, so we tried both possibilities and took the best one!

Analyzing the Runtime

Theorem: MWIS on a tree can be solved in O(n)!!

Work =
$$\sum_{v \in V} \# \text{children} + \# \text{grandchilher}$$

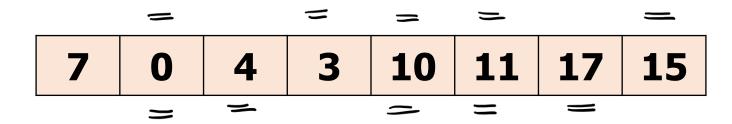
= $n + n$
= $O(n)$

Longest Increasing Subsequence

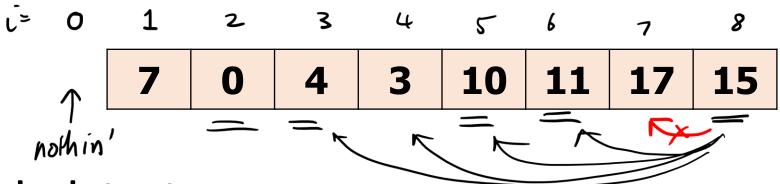
Longest Increasing Subsequence

Definition (LIS): Given a sequence of n numbers $a_1, a_2, ..., a_n$, find the length of a longest strictly increasing subsequence.

Note: A subsequence does not have to be contiguous



Defining Subproblems



Optimal substructure:

An LIS ending with the element 15 extends the LIS that...

Writing a Recurrence

$$LIS(i) = \begin{cases} 0 & \text{if } i = 0 \\ \max_{j < i} LIS(j) + 1 \\ \alpha_{j} < \alpha_{i} \end{cases}$$

Answer: max LIS(i)

Analyzing Runtime

$$LIS(i) = 1 + \max_{\substack{j \in [0,i) \\ a_j < a_i}} LIS(j)$$

- Naïve runtime: (n^2)
- Can we do better?
- This recurrence is taking the maximum value in a range
- Do we know a way to do this more efficiently??

Optimized LIS: SegTree DP!

• Big idea: Solve the subproblems in a different order!

Optimized LIS: Pseudocode

```
(n \log n)
  function LIS(list A):
   n = length(A)
    results := SegTree(array of n+1 0's)
→> sortedByVal := sorted list of (val, index) pairs ←
    for (val, index) in sortedByVal:
        answer := results. Range Max (O, index)+
         results. Assign ( Index, answer)
   return result. Range Max (0, n+1)
```

Take-home messages

- Breaking a problem into subproblems is hard. Common patterns:
 - Can I use the <u>first k elements</u> of the input?
 - Can I restrict an integer parameter (e.g., knapsack size) to a smaller value?
 - On trees, can I solve the problem for each subtree? (Tree DP)
 - Can I solve the problem for a <u>subset of the input</u> (*next lecture, TSP*)
 - Can I keep track of more information (next lecture, TSP)
- Try a "clever brute force" approach.
 - Make one decision at a time and recurse, then take the best thing that results.
 - Can think of this as <u>memoized backtracking</u>
- Can I use a clever data structure to speed up the recurrence (SegTree DP!)
- Complexity analysis is *often* just subproblems \times time per subproblem
 - But sometimes its harder and we must do some more analysis