Algorithm
Design and Analysis

Dynamic Programming a



e Learn about (maybe review)

* Understand the key elements:
* Memoization
* Optimal Substructure

* Overlapping subproblems

* Practice a lot of DP problems!



You can climb up the stairs in increments of 1 or 2 steps.
How many ways are there to jump up n stairs?

Could we solve this problem in terms of ?
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function stairs(int n) {
if (n <= 1) then return 1
else {
let waysToTakelStep = stairs(n-1)
let waysToTake2Steps = stairs(n-2)
return waysToTakelStep + waysToTake2Steps

Issue? Exponentially many recursive calls!!
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apl. VO
dictionary<int, int> £ Key Idea:
Don’t solve the same problem

function stairs(int n . .
( ) 1 twice! Store the result and reuse it!

if (n <= 1) then return 1

if (n not in ) {

memo [n] = shurs (h-1) +skrhs (n-2) Note:
} The memo dictionary does not
return [n] need to be a hashtable! What

} should it be in this case?



* We could solve the stairs problem by using solutions to smaller
instances of the stairs problem

stairs(n) = stairs(n-1) + stairs(n-2)

Key Idea:
We say that a problem has optimal substructure if the optimal
solution to the problem can be derived from optimal solutions
to smaller instances (called ) of the problem.



* The DP implementation of stairs was faster because each subproblem
was solved only once instead of exponentially many times

stairs(n) = stairs(n-1) + stairs(n-2)

Key Idea:
Overlapping subproblems are subproblems that occur multiple
(often exponentially many) times throughout the recursion tree.
This is what distinguishes DP from ordinary recursion.



2.

3.

4.

6.

Identify a set of optimal subproblems

e Write down a clear and unambiguous definition of the
subproblems.

Identify the relationship between the subproblems

* Write down a recurrence that gives the solution to a problem in
terms of its subproblems

Analyze the required runtime

e Usually (but not always) the number of subproblems multiplied
by the time taken to solve a subproblem.

Select a data structure to store subproblems

e Usually just an array. Occasionally something more complex

Choose between bottom-up or top-down implementation
Write the code!



The Knapsack Problem



Definition (Knapsack): Given a set of n items, the i'" of which has
size s; and value v;. The goal is to find a subset of the items whose
total size is at most S, with maximum possible value.

Al B|C|D|E|F| G
Value | 7 | 9 | 5 |12 |15] 6 | 12 S =15
Size | 3| 4| 2|6 | 7| 3|5



A | B | C | D | E G
Value | 7 | 9 5 |12 | 15 12
Size 3 4 2 6 / 5

Issue:

* How do we know whether to include a
particular object X?

* We don’t know in advance, so

and pick best one!

Optimal substructure:

* Every object is either included or
not included

e If anitem X is included, the
remaining S — Size(X) space is filled
with some subset of the remaining
items

* This is just a smaller instance of the
knapsack problem!!
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Key Idea:

We could not know in advance whether to include the it! item or
not, so we tried both possibilities and took the best one.



Analysis: Knapsack can be solved in O(nS) time

N=S swqah/é(w.g

O fime

S OCHS) d‘l—W\e,.l



Max-weight independent set
In atree (Tree DP)



Definition (Independent set): Given a tree on n vertices, an independent set is a subset of the
vertices S € V such that none of them are adjacent.

Each vertex has a non-negative weight w,,, and we want to find the maximum possible weight
independent set.
Optimal substructure: @

e A solution either includes the root or does not include the root

* If theroot is chosen, the remaining solution is an independent
set of the remaining vertices, excluding the root’s children

* Each child/grandchild subtree is just another smaller instance of -V
the MWIS-in-a-tree problem!!
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Again:

We could not know in advance whether to include the root or not,
so we tried both possibilities and took the best one!



Theorem: MWIS on a tree can be solved in O(n)!!
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Longest Increasing
Subseqgquence



Definition (LIS): Given a sequence of n numbers a4, a,, ..., a,, find
the length of a longest strictly increasing subsequence.

* Note: A subsequence does not have to be contiguous
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Optimal substructure:
* An LIS ending with the element 15 extends the LIS that...
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Writing a Recurrence
(D

LIS = <  max LIS(j)4 |
j <L
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LIS(3) = 1+ max LIS(j)
a;<a;

+ Naive runtime: () (n?)

e Can we do better?

* This recurrence is taking the

* Do we know a way to do this more efficiently??



A:

SegTree:

LIS(?J) =1+ _m%)_c LIS(j)
'a§<ai;
l
O 4|3 (1011 17 15
| 122 | 3| 4| &5

* Big idea: Solve the subproblems in a
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function LIS(list A): OC” )03 g )

n = length(A)
results := SegTree(array of n+l 0’s)
sortedByVal := sorted list of (val, index) pairs

for (val, index) in sortedByVal:
answer = sl . Romge Max (0;070(2)() + I
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return readk Range Max (0, f“")



* Breaking a problem into subproblems is hard.

Can | use the first k elements of the input?

Can | restrict an integer parameter (e.g., knapsack size) to a smaller value?
On trees, can | solve the problem for each subtree? (Tree DP)

Can | solve the problem for a subset of the input ( )

Can | keep track of more information ( )

e Trya“ ¥ approach.
* Make one decision at a time and recurse, then take the best thing that results.
* Can think of this as memoized backtracking

e Can | use a clever data structure to speed up the recurrence (SegTree DP!)

* Complexity analysis is often just subproblems X time per subproblem
* But sometimes its harder and we must do some more analysis
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