
Algorithm
Design and Analysis

Dynamic Programming



Roadmap for today

• Learn about (maybe review) dynamic programming

• Understand the key elements:

• Memoization

• Optimal Substructure

• Overlapping subproblems

• Practice a lot of DP problems!
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Starter example: Counting steps

Could we solve this problem in terms of smaller subproblems?

You can climb up the stairs in increments of 1 or 2 steps. 
How many ways are there to jump up 𝑛 stairs?
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Implementation #1

function stairs(int n) {

  if (n <= 1) then return 1

  else {

    let waysToTake1Step = stairs(n-1)

    let waysToTake2Steps = stairs(n-2)

    return waysToTake1Step + waysToTake2Steps

  }

}

Issue? Exponentially many recursive calls!!
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Implementation #2

dictionary<int, int> memo

function stairs(int n) {

  if (n <= 1) then return 1

  if (n not in memo) {

  }

  return memo[n]

}

Key Idea: Memoization
Don’t solve the same problem 

twice! Store the result and reuse it!
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Note: Memo dictionary
The memo dictionary does not 
need to be a hashtable! What 

should it be in this case?



When can we use DP?

• We could solve the stairs problem by using solutions to smaller 
instances of the stairs problem

stairs(n) = stairs(n-1) + stairs(n-2)

Key Idea: Optimal substructure
We say that a problem has optimal substructure if the optimal 
solution to the problem can be derived from optimal solutions 

to smaller instances (called subproblems) of the problem.
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When can we use DP?

• The DP implementation of stairs was faster because each subproblem 
was solved only once instead of exponentially many times

stairs(n) = stairs(n-1) + stairs(n-2)

Key Idea: Overlapping subproblems
Overlapping subproblems are subproblems that occur multiple 

(often exponentially many) times throughout the recursion tree. 
This is what distinguishes DP from ordinary recursion.
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“Recipe” for dynamic programming

1. Identify a set of optimal subproblems

• Write down a clear and unambiguous definition of the 
subproblems. 

2. Identify the relationship between the subproblems

• Write down a recurrence that gives the solution to a problem in 
terms of its subproblems

3. Analyze the required runtime

• Usually (but not always) the number of subproblems multiplied 
by the time taken to solve a subproblem.

4. Select a data structure to store subproblems

• Usually just an array.  Occasionally something more complex

5. Choose between bottom-up or top-down implementation

6. Write the code!

Often all that is 
required for a 
theoretical solution

Only required if the 
answer is not “array”

Mostly ignored in this 
class (unless it’s a 
programming HW!)

8



The Knapsack Problem

9



The Knapsack Problem

𝑺 = 𝟏𝟓
A B C D E F G

Value 7 9 5 12 15 6 12

Size 3 4 2 6 7 3 5

Definition (Knapsack): Given a set of 𝒏 items, the 𝑖th of which has 
size 𝒔𝒊 and value 𝒗𝒊. The goal is to find a subset of the items whose 

total size is at most 𝑺, with maximum possible value.
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Identifying Optimal Substructure

Optimal substructure:

• Every object is either included or 
not included

• If an item X is included, the 
remaining S – Size(X) space is filled 
with some subset of the remaining 
items

• This is just a smaller instance of the 
knapsack problem!!

A B C D E F G

Value 7 9 5 12 15 6 12

Size 3 4 2 6 7 3 5

Issue:

• How do we know whether to include a 
particular object X?

• We don’t know in advance, so try both 
choices and pick best one!
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Writing a recurrence

𝑉 𝑘, 𝐵 =
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Key Idea: Clever brute force

We could not know in advance whether to include the 𝑖th item or 
not, so we tried both possibilities and took the best one.



Analyzing the Runtime

Analysis: Knapsack can be solved in 𝑂(𝑛𝑆) time 
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Max-weight independent set 
in a tree (Tree DP)
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Independent sets on trees (Tree DP)
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Definition (Independent set): Given a tree on 𝒏 vertices, an independent set is a subset of the 
vertices 𝑆 ⊆ 𝑉 such that none of them are adjacent.

Each vertex has a non-negative weight 𝒘𝒗, and we want to find the maximum possible weight 
independent set.

Optimal substructure:

• A solution either includes the root or does not include the root

• If the root is chosen, the remaining solution is an independent 
set of the remaining vertices, excluding the root’s children

• Each child/grandchild subtree is just another smaller instance of 
the MWIS-in-a-tree problem!!



Writing a Recurrence

𝑊(𝑣) = max
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Again: Clever brute force
We could not know in advance whether to include the root or not, 

so we tried both possibilities and took the best one!



Analyzing the Runtime
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Theorem: MWIS on a tree can be solved in 𝑂(𝑛)!!



Longest Increasing 
Subsequence
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Longest Increasing Subsequence

• Note: A subsequence does not have to be contiguous
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Definition (LIS): Given a sequence of 𝑛 numbers 𝑎1, 𝑎2, … , 𝑎𝑛, find 
the length of a longest strictly increasing subsequence. 
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Defining Subproblems

Optimal substructure:

• An LIS ending with the element 15 extends the LIS that…
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Writing a Recurrence
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𝐿𝐼𝑆 𝑖 =

Answer:



Analyzing Runtime

• Naïve runtime:

• Can we do better?
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• This recurrence is taking the maximum value in a range

• Do we know a way to do this more efficiently??



Optimized LIS: SegTree DP!

𝐴:
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7 0 4 3 10 11 17 15

SegTree:

• Big idea: Solve the subproblems in a different order!



Optimized LIS: Pseudocode

function LIS(list A):

  n = length(A)

  results := SegTree(array of n+1 0’s)

  sortedByVal := sorted list of (val, index) pairs

  for (val, index) in sortedByVal:

  return
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Take-home messages

• Breaking a problem into subproblems is hard. Common patterns:
• Can I use the first 𝑘 elements of the input?
• Can I restrict an integer parameter (e.g., knapsack size) to a smaller value?
• On trees, can I solve the problem for each subtree? (Tree DP)
• Can I solve the problem for a subset of the input (next lecture, TSP)
• Can I keep track of more information (next lecture, TSP)

• Try a “clever brute force” approach.
• Make one decision at a time and recurse, then take the best thing that results. 
• Can think of this as memoized backtracking

• Can I use a clever data structure to speed up the recurrence (SegTree DP!)

• Complexity analysis is often just subproblems × time per subproblem
• But sometimes its harder and we must do some more analysis
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