
Algorithm Design and
Analysis

Range Query Data Structures

Roadmap for Today
• Understand the range query problem

• See how to apply range queries to speed up other algorithms

• Learn about the SegTree data structure for range queries

The Range Query Problem

A Motivating Example
• Let’s say I have some sensor data along a pipe

• Different sensors may update their readings at different times

• I want to quickly be able to get information about the sensors in some
range (eg. sum, max, min)

The Range Query Problem

This lecture: We focus on range sums
• Given an interval, [𝑖, 𝑗) return the sum of that interval, i.e.,

Given: An array 𝐴
Queries: For an interval [𝑖, 𝑗), answer queries (e.g. sum, min, max) on
that interval

෍
𝑖≤𝑘<𝑗

𝐴[𝑘]

Our Range Query Data
Structure

Algorithm Brainstorming
What’s the simplest algorithm you can think of?

How could we speed this up with pre-processing?

Just do it

Loop through the range - add them up

Prefix Sums Plib = prefix sum up to +
not including :sum(ii ,j) =P[j]-P[i]

Algorithms
Algorithm 1 (Just do it): Loop over the range and compute the sum

Algorithm 2 (Prefix Sums): Precompute prefix sums 𝑃. A query on
interval 𝑖, 𝑗 returns 𝑃 𝑗 − 𝑃[𝑖].

Preprocessing Time Query Time

Preprocessing Time Query Time

0(1) 0(n)

an) all

Supporting Updates
Now we have 2 operations:
• RangeSum(i,j): returns the sum of the range [𝑖, 𝑗)

• Assign(i,x): sets 𝐴[𝑖] = 𝑥

Algorithm Preprocessing
Time Query Time Update Time

Just do it

Prefix Sums

Goal

#It
-

-
--

O(1) On 0(1)

o(n) All o(n)

0(n) Oliogn) ollogn)

The Problem with Prefix Sums

Problem: If we update the first value in the list, we have to update
𝑂(𝑛) prefix sums

Big Idea: We want fewer dependencies
• This may remind us of parallel algorithms
• Is there a way to compute sums with less dependencies?

Prefixes
= 0 3 4 14 22 26 31 40 42

𝑖 0 1 2 3 4 5 6 7

A = 3 1 10 8 4 5 9 2

Divide and Conquer Summation

A 3 1 10 8 4 5 9 2
𝑖 0 1 2 3 4 5 6 7

42

-
22 20

&
4 Ig 9 14

&

/5

Goals
Show construct(A) is 𝑂(𝑁)

Show Assign(i, x) is 𝑂(𝑙𝑜𝑔𝑁)

Show RangeSum(i, j) is 𝑂(𝑙𝑜𝑔𝑁)

T

↑
O(n) nodes (2n-1) G

adding is O(1 ↑5

overall : O(n)(n- &

ollogn) nodes to update
olk) to recalculate the val

oclogns in total

Building Intuition
How would we go about finding the sum of this interval?

42

22 20

4 18 9 11

A 3 1 10 8 4 5 9 2
𝑖 0 1 2 3 4 5 6 7

[2 .7)

[2 7)

Our algorithm
Let’s start at the top of the tree. What sums are we looking for in the
children?

42

22 20

4 18 9 11

A 3 1 10 8 4 5 9 2
𝑖 0 1 2 3 4 5 6 7

[2 ,7)

O g

[2 , 4) [4 ,7)
O 44 g

X [2 ,42
O 22 44 60 g

Proof: RangeSum is 𝑂(log(𝒏))
We start at the root, looking for the sum of [𝑖, 𝑗). We recursively look for the sum
from the left/right children. We want 𝑂(log(𝑛)) recursive calls.

Case 1: The interval we’re looking for is entirely contained in one half of the
current node

node

leftChild rightChild

𝑖 𝑗 only I call

Proof: RangeSum is 𝑂(log(𝒏))
Case 2: The interval we’re looking for is split across both halves of the node

node

leftChild rightChild

𝑖 𝑗

·
a

mid

left right
log N log N

[i miny [mid j)

·

Applications

The Interface
• Construct(A): Takes an array A, and returns a segTree of A

• 𝑂(𝑁)

• RangeSum(i,j): Returns the sum of the elements in the interval
[𝑖, 𝑗)

• 𝑂(𝑙𝑜𝑔𝑁)

• Assign(i,x): Sets A[i] = x
• 𝑂(𝑙𝑜𝑔𝑁)

When using SegTrees, treat them as arrays. We don’t care about the
implementation!

Back to the Motivating Example
We have sensor data in a line and want the sum of sensor readings in a range

• Simply store the sensor data in a SegTree!

• To get the sum of readings in [𝑖, 𝑗) , call RangeSum(i, j)

So should we always use SegTrees when we want queries in a range?

• What if we had stock data that updated with the current price every hour?
• We want to answer queries about the sum of prices in different time

intervals (we’ll use that to get average prices)

1. 1

Warmup Problem
• Given: An array 𝐴 of length n containing integers in {0, … , 2𝑛 − 1}
• Support updates of an element in 𝐴 in 𝑂(𝑙𝑜𝑔𝑁) time
• Answer queries in 𝑂(𝑙𝑜𝑔𝑁) to return the number of values in 𝐴 in

the range [𝑖, 𝑗)

segTree =

𝑖 0 1 2 3

A = 5 2 3 2

wo [Vi , Vj)

query ([2 ,
4)) + 3

~(

Speeding up Algorithms

Naive algorithm:
for i in [0, …, n-1]:

 for j in [i+1, …, n-1]:

 if A[i] > A[j]: count ++

Problem (Inversion Count):
• Given: An array 𝐴 of length n containing integers in {0, … , 2𝑛 − 1}
• Return: The number of inversions in 𝐴

• An inversion is a pair of elements such that 𝑖 < 𝑗 but 𝐴[𝑖] >
 𝐴[𝑗]

F

anlots
-

inversions = 4

Faster Inversion Count
How can we use segTrees to speed up our algorithm?

Where are we querying a range?

segTree
=
𝑖 0 1 2 3 4 5 6 7 8 9

A = 1 0 4 3 2

for i in [0, ... n - 1)
count values5 less than ACi] that
occur after :

00 100 1 1 0 1 0

4 inversions

Faster Inversion Count: Pseudocode
fun inversionCount (A : int list) {

 counts = segTree([0] * (2*A.length))

 invCount = 0

 for i in {

 }

 return count

}

Runtime:

Olnlogn (
[H-1

, ..., 8]

invcount += counts . RangeSum 10 , A[i])
counts.Assign (A[i]

, counts[A(i)] + 1)
-

Rangesum(A[i] ,Ali] + 1)

SegTree Implementation

SegTree Implementation
Recall: Binary heaps
• Root is at index 0
• Left child of 𝑖 is at index 2𝑖 + 1
• Right child of 𝑖 is at index 2𝑖 + 2

For simplicity: Assume 𝑛 is a power of 2

heap
=
i 0 1 2 3 4 5 6 7

2 *27)
= 5

2x2+2

= 6

a cent

Implementation:
Construct

constructor (A : int list) {

 n = A.length

 nodes = [None] * (2*n – 1)

 # fill in the leaves
 for i in [0, …, n-1] {

 nodes[i + (n-1)] = Node(A[i], i, i+1) }

 # fill in the rest of the tree from bottom to top
 for i in [n-2, n-3, …, 0] {

}}

class SegTree {

 nodes : Node list

 n : int }

class Node {

 val : int

 leftIdx : int

 rightIdx : int }

fun lChild(nodeIdx : int)

{ return 2*nodeIdx +1 }

fun rChild(nodeIdx : int)

{ return 2*nodeIdx + 2 }

ja
00

17
D

leftNode= nodes [ichild (i)]

rightnod = codes [rchild (i)]

Nodes[i) = Node (leftNod .val-rightNode.
val
,leftNode . leftldX ,

right Node-right Id x

Implementation: Assign
fun assign(i, x) {

 nodeIdx = i + n – 1

 nodes[nodeIdx].val = x

 while nodeIdx > 0 {

 }

}

class SegTree {

 nodes : Node list

 n : int }

class Node {

 val : int

 leftIdx : int

 rightIdx : int }

fun parent(nodeIdx) {

 return (nodeIdx – 1) / 2 }

nodeldx = parent (nodeldy
node = nodes [NodeldX]
leftN = nodes [Ichild (nodeldx)]
rightN =nodes[mhild (nodeldy 1)
nodeval = (leftNval + rightN .val) ⑳

Implementation: RangeSum
fun sum(nodeIdx : int, i : int, j : int) {

 node = nodes[nodeIdx]

 if (i == node.leftIdx and node.rightIdx == j) { }

 else {

 mid = (node.leftIdx + node.rightIdx) / 2

 if (i >= mid) { }

 else if (j <= mid) { }

 else {

}}}

fun rangeSum(i, j) {
 return sum(0, i, j)
}

--
-

return nodeval

return sum (rhid(nodeldy) ,
i
, j)

return Sum)knid(nodedx) , i ,j)
return sum (Child (nodkidx) , i , mid) +

Sam (rchild (nodeldy)
,
mid ,j)

Did we have to sum?

A 3 1 10 8 4 5 9 2
i 0 1 2 3 4 5 6 7

10

10 9

(b)(59)
11 (1)

Take-Home Messages
• SegTrees are useful for speeding up algos that involve queries over a range of

elements

• Remember that you may store information in a different order in the segTree than
in your input array

• E.g., speeding up inversion counting from 𝑂(𝑛2) to 𝑂(𝑛𝑙𝑜𝑔𝑛)

• When you use SegTrees in your own algos, don’t think about them as trees!

They’re basically fancy lists.

• We can implement a SegTree with any associative operation (even a custom one!)

• You will see an example of this in recitation

