
Algorithm
Design and Analysis

Union-Find (More Amortized Analysis!)

1

Reminder

• Midterm One is next Tuesday at 7:00pm

• If you 100% can not make this for a legitimate reason, email us or
post on Piazza by the end of today.

2

Roadmap for today

• Design the Union-Find data structure for the disjoint sets problem

• Practice potential functions by analyzing Union-Find

3

Motivation: Kruskal’s Algorithm

Review (Minimum Spanning Tree): A spanning tree of an undirected
graph with the least total (edge) cost of all possible spanning trees

Review (Kruskal’s Algorithm): For each edge (𝑢, 𝑣) in sorted order by
cost, add the edge to the spanning tree if 𝑢 and 𝑣 are not connected.

4

How do we do that part??

The disjoint-sets problem

Problem (Disjoint Sets): We want to support the following API:

• MakeSet(𝒙): Create a set consisting of the single element {𝑥}

• Find(𝒙): Return the representative element of the set containing 𝑥

• Union(𝒙, 𝒚): Merge the two sets 𝑆𝑥 ∋ 𝑥 and Sy ∋ 𝑦 into a single set.

5

Simple but inefficient #2: Maintain a
graph with an adjacency list. Union
just adds a new edge: costs 𝑶(𝟏).

But find must search the entire
connected component: costs 𝑶(𝒏).

Simple but inefficient #1: Maintain a
representative for each element.

Union loops over every element and
updates the ID of the representative:

costs 𝑶(𝒏). Find costs 𝑶(𝟏).

The disjoint-set forest data structure

• Key idea: Represent the sets as trees. Use the roots of the trees as
the representative element.

• Representation: Store a parent pointer for each node. Roots have no
parent (by convention, 𝑝 𝑥 = 𝑥 for roots).

6

Implementation (basic version)

7

• MakeSet(𝒙):

• Find(𝒙):

• Union(𝒙, 𝒚):

• Link(𝒙, 𝒚)

Performance

8

Theorem: Let 𝑛 be the current number of elements in the sets (i.e., the
number of MakeSet operations performed so far). There exists inputs for

which every find costs Θ 𝑛 .

Making Union better?

• The bad performance was caused by long chains of nodes…

• Can we just… not do that?

9

• We should store an extra field 𝑠(𝑥) that knows the size of the trees

• 𝑠(𝑥) is the size of the tree rooted at 𝑥 (we don’t care about non-roots)

Idea (Union-by-size): When performing a Union, make the smaller tree a
child of the larger tree. If they’re the same size, then pick arbitrarily.

Union-by-size implementation

• Link(𝒙, 𝒚):

10

Performance of union-by-size

11

Theorem: Let 𝑛 be the current number of elements in the sets. Using
union-by-size, every Link operation costs 𝑂 1 and every Find operation

costs 𝑂(log 𝑛) in the worst-case.

Another improvement

• We just made Union better. Can we instead/also make Find better?

12

Idea (Path compression): When performing a Find, point every node along
the path at its current root/representative element.

Path compression implementation

• Find(𝒙):

13

Cost model for amortization

• To avoid arbitrary constants in the analysis, we will once again work in
a simplified cost model. All our analyses will be asymptotically valid
in the word RAM up to constant factors.
• MakeSet costs 1

• Link costs 1

• Find costs number of nodes touched

• Goal: Amortized costs of 𝑂 log 𝑛 for each operation

14

Performance of path compression

15

• Observation: Balance is what matters

• Balanced trees are always fast, imbalanced trees are slow

• How do we measure how balanced a tree is at a per-node basis?

Theorem: Let 𝑛 be the current number of elements in the sets. Using path
compression (but not union-by-size), in our cost model, the amortized cost of

MakeSet is 1, Link is 1 + log 𝑛 , and Find is (2 + log 𝑛).

Balanced or imbalanced?

16

• Root is neither heavy nor light (it has no parent)

• In a perfectly balanced tree, every node is light (except root)

• In a chain (the worst-balanced tree), every node is heavy (except root)

Definition (heavy/light): Given a node 𝑢 and its parent 𝑝, call a node:

• Heavy if size 𝑢 >
1

2
 size(𝑝), i.e., 𝑢 contains a majority of 𝑝’s descendants

• Light if size 𝑢 ≤
1

2
size(𝑝), i.e., 𝑢 contains at most half of 𝑝’s descendants

Balanced or imbalanced?

17

Lemma (light lemma): On any root-to-leaf path in any tree of 𝑛 nodes, there are at
most log 𝑛 light nodes.

Definition (Light):

size 𝑢 ≤
1

2
size(𝑝),

Reaching your potential

• Find costs #nodes touched = (1 + #heavy + #light).

• We know that #light ≤ log 𝑛 (light lemma)

• So, Find costs at most (1 + log 𝑛 + #heavy).

• We want to define a potential function that will save up and pay for
the cost of touching the heavy nodes

18

𝐚𝐜 = 1 + log 𝑛 + #heavy + ΔΦ

Actual cost Change in potential

A potential idea

• Observation: A node can have at most one heavy child

19

• Potential potential function idea

Φ 𝐹 =

• Problem: Can we prove that the number of heavy nodes decreases?

• Exercise: Draw a scenario where a path compression operation does
not decrease the number of heavy nodes.

… …

…

Too many heavy nodes!

20

H

H

HFind()→

… …

…

H

H H

• Exercise: Draw a scenario where a path compression operation does
not decrease the number of heavy nodes.

Refining the potential

• Observation: A node can have at most one heavy child but moving it
does not necessarily reduce the number of heavy children (a sibling
may become heavy in its place)

• However, is there a maximum number of times this can happen?

21

• Moving the heavy child at least halves the size of the subtree!

• Therefore, the subtree of node 𝑥 with size 𝑠(𝑥) can have its heavy
child moved at most _________ times!

The balance potential

• Define our potential function to be:

Φ 𝐹 =

22

• Nice properties:
• Initially zero (all trees start at size 1)

• Always non-negative

• Increases when we perform a Link

• Decreases when we perform a Find

no debt

Links save up $$$ to pay for Finds

Analysis of MakeSet

23

Lemma (cost of MakeSet): MakeSet does not change Φ 𝐹

Corollary: The MakeSet operation has an amortized cost of 1

Analysis of Link

24

Lemma (cost of Link): A link operation at most increases Φ(𝐹) by log 𝑛

Corollary: A link operation has amortized cost at most 1 + log 𝑛

Analysis of Find

• Consider heavy nodes 𝑢 with parent 𝑝 (other than 𝑟) on the Find path

25

Lemma: A Find operation decreases Φ(𝐹) by at least #heavy nodes − 1

Analysis of Find

26

Corollary (cost of Find): Find has amortized cost at most 2 + log 𝑛

Summary of Union-Find

• Union-Find with union by size:
• Link: 𝑂(1)

• Find: 𝑂(log 𝑛) worst-case

• Union-Find with path compression:
• Link: 𝑂 log 𝑛 amortized

• Find: 𝑂(log 𝑛) amortized

27

• Union-Find with both! (Not proven in this class):
• Link: 𝑂 𝛼 𝑛 amortized

• Find: 𝑂 𝛼 𝑛 amortized

• Ω 𝛼 𝑛 is also a lower bound so this is optimal!

	Slide 1: Algorithm Design and Analysis
	Slide 2: Reminder
	Slide 3: Roadmap for today
	Slide 4: Motivation: Kruskal’s Algorithm
	Slide 5: The disjoint-sets problem
	Slide 6: The disjoint-set forest data structure
	Slide 7: Implementation (basic version)
	Slide 8: Performance
	Slide 9: Making Union better?
	Slide 10: Union-by-size implementation
	Slide 11: Performance of union-by-size
	Slide 12: Another improvement
	Slide 13: Path compression implementation
	Slide 14: Cost model for amortization
	Slide 15: Performance of path compression
	Slide 16: Balanced or imbalanced?
	Slide 17: Balanced or imbalanced?
	Slide 18: Reaching your potential
	Slide 19: A potential idea
	Slide 20: Too many heavy nodes!
	Slide 21: Refining the potential
	Slide 22: The balance potential
	Slide 23: Analysis of MakeSet
	Slide 24: Analysis of Link
	Slide 25: Analysis of Find
	Slide 26: Analysis of Find
	Slide 27: Summary of Union-Find

