
Algorithm
Design and Analysis

Union-Find (More Amortized Analysis!)
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Reminder

• Midterm One is next Tuesday at 7:00pm

• If you 100% can not make this for a legitimate reason, email us or 
post on Piazza by the end of today.
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Roadmap for today

• Design the Union-Find data structure for the disjoint sets problem

• Practice potential functions by analyzing Union-Find
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Motivation: Kruskal’s Algorithm

Review (Minimum Spanning Tree):  A spanning tree of an undirected 
graph with the least total (edge) cost of all possible spanning trees

Review (Kruskal’s Algorithm): For each edge (𝑢, 𝑣) in sorted order by 
cost, add the edge to the spanning tree if 𝑢 and 𝑣 are not connected.
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How do we do that part??



The disjoint-sets problem

Problem (Disjoint Sets): We want to support the following API:

• MakeSet(𝒙):  Create a set consisting of the single element {𝑥}

• Find(𝒙): Return the representative element of the set containing 𝑥

• Union(𝒙, 𝒚): Merge the two sets 𝑆𝑥 ∋ 𝑥 and Sy ∋ 𝑦 into a single set.
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Simple but inefficient #2: Maintain a 
graph with an adjacency list. Union 
just adds a new edge: costs 𝑶(𝟏). 

But find must search the entire 
connected component: costs 𝑶(𝒏).

Simple but inefficient #1: Maintain a 
representative for each element. 

Union loops over every element and 
updates the ID of the representative: 

costs 𝑶(𝒏). Find costs 𝑶(𝟏). 



The disjoint-set forest data structure

• Key idea: Represent the sets as trees.  Use the roots of the trees as 
the representative element.

• Representation:  Store a parent pointer for each node. Roots have no 
parent (by convention, 𝑝 𝑥 = 𝑥 for roots).
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Implementation (basic version)
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• MakeSet(𝒙):

• Find(𝒙):

• Union(𝒙, 𝒚):

• Link(𝒙, 𝒚)



Performance
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Theorem: Let 𝑛 be the current number of elements in the sets (i.e., the 
number of MakeSet operations performed so far). There exists inputs for 

which every find costs Θ 𝑛 .



Making Union better?

• The bad performance was caused by long chains of nodes…

• Can we just… not do that?
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• We should store an extra field 𝑠(𝑥) that knows the size of the trees

• 𝑠(𝑥) is the size of the tree rooted at 𝑥 (we don’t care about non-roots)

Idea (Union-by-size): When performing a Union, make the smaller tree a 
child of the larger tree. If they’re the same size, then pick arbitrarily.



Union-by-size implementation

• Link(𝒙, 𝒚):
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Performance of union-by-size
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Theorem: Let 𝑛 be the current number of elements in the sets. Using 
union-by-size, every Link operation costs 𝑂 1  and every Find operation 

costs 𝑂(log 𝑛) in the worst-case.



Another improvement

• We just made Union better. Can we instead/also make Find better?
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Idea (Path compression): When performing a Find, point every node along 
the path at its current root/representative element.



Path compression implementation

• Find(𝒙):
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Cost model for amortization

• To avoid arbitrary constants in the analysis, we will once again work in 
a simplified cost model.  All our analyses will be asymptotically valid 
in the word RAM up to constant factors.
• MakeSet costs 1

• Link costs 1

• Find costs number of nodes touched

• Goal: Amortized costs of 𝑂 log 𝑛  for each operation
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Performance of path compression
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• Observation: Balance is what matters

• Balanced trees are always fast, imbalanced trees are slow

• How do we measure how balanced a tree is at a per-node basis?

Theorem: Let 𝑛 be the current number of elements in the sets. Using path 
compression (but not union-by-size), in our cost model, the amortized cost of 

MakeSet is 1, Link is 1 + log 𝑛 , and Find is (2 + log 𝑛).



Balanced or imbalanced?
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• Root is neither heavy nor light (it has no parent)

• In a perfectly balanced tree, every node is light (except root)

• In a chain (the worst-balanced tree), every node is heavy (except root)

Definition (heavy/light): Given a node 𝑢 and its parent 𝑝, call a node:

• Heavy if size 𝑢 >
1

2
 size(𝑝), i.e., 𝑢 contains a majority of 𝑝’s descendants

• Light if size 𝑢 ≤
1

2
size(𝑝), i.e., 𝑢 contains at most half of 𝑝’s descendants



Balanced or imbalanced?
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Lemma (light lemma): On any root-to-leaf path in any tree of 𝑛 nodes, there are at 
most log 𝑛 light nodes.

Definition (Light):

size 𝑢 ≤
1

2
size(𝑝), 



Reaching your potential

• Find costs #nodes touched = (1 + #heavy + #light).

• We know that #light ≤ log 𝑛     (light lemma)

• So, Find costs at most (1 + log 𝑛 + #heavy).

• We want to define a potential function that will save up and pay for 
the cost of touching the heavy nodes
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𝐚𝐜 = 1 + log 𝑛 + #heavy + ΔΦ

Actual cost Change in potential



A potential idea

• Observation: A node can have at most one heavy child
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• Potential potential function idea

Φ 𝐹 = 

• Problem: Can we prove that the number of heavy nodes decreases?

• Exercise: Draw a scenario where a path compression operation does 
not decrease the number of heavy nodes.



… …

…

Too many heavy nodes!
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• Exercise: Draw a scenario where a path compression operation does 
not decrease the number of heavy nodes.



Refining the potential

• Observation: A node can have at most one heavy child but moving it 
does not necessarily reduce the number of heavy children (a sibling 
may become heavy in its place)

• However, is there a maximum number of times this can happen?
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• Moving the heavy child at least halves the size of the subtree!

• Therefore, the subtree of node 𝑥 with size 𝑠(𝑥) can have its heavy 
child moved at most _________ times!



The balance potential

• Define our potential function to be:

Φ 𝐹 = 
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• Nice properties:
• Initially zero (all trees start at size 1)

• Always non-negative

• Increases when we perform a Link

• Decreases when we perform a Find

no debt

Links save up $$$ to pay for Finds



Analysis of MakeSet
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Lemma (cost of MakeSet): MakeSet does not change Φ 𝐹

Corollary: The MakeSet operation has an amortized cost of 1



Analysis of Link
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Lemma (cost of Link): A link operation at most increases Φ(𝐹) by log 𝑛

Corollary: A link operation has amortized cost at most 1 + log 𝑛



Analysis of Find

• Consider heavy nodes 𝑢 with parent 𝑝 (other than 𝑟) on the Find path
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Lemma: A Find operation decreases Φ(𝐹) by at least #heavy nodes − 1



Analysis of Find
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Corollary (cost of Find): Find has amortized cost at most 2 + log 𝑛



Summary of Union-Find

• Union-Find with union by size:
• Link: 𝑂(1)

• Find: 𝑂(log 𝑛) worst-case

• Union-Find with path compression:
• Link: 𝑂 log 𝑛  amortized

• Find: 𝑂(log 𝑛) amortized
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• Union-Find with both! (Not proven in this class):
• Link: 𝑂 𝛼 𝑛  amortized

• Find: 𝑂 𝛼 𝑛  amortized

• Ω 𝛼 𝑛  is also a lower bound so this is optimal!
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