Algorithm
Design and Analysis

Union-Find (More Amortized Analysis!)



 Midterm One is next Tuesday at 7:00pm

* If you 100% can not make this for a legitimate reason, email us or
post on Piazza by the end of today.




Roadmap for today

e Design the Union-Find data structure for the disjoint sets problem

* Practice potential functions by analyzing Union-Find



Review (Minimum Spanning Tree): A spanning tree of an undirected
graph with the least total (edge) cost of all possible spanning trees

Review (Kruskal’s Algorithm): For each edge (u, v) in sorted order by
cost, add the edge to the spanning tree if u and v are not connected.



We want to support the following API:
* MakeSet(x): Create a set consisting of the single element {x}
* Find(x): Return the representative element of the set containing x

* Union(x, y): Merge the two sets S, 3 x and Sy 3 y into a single set.

Simple but inefficient #1: Maintain a Simple but inefficient #2: Maintain a
representative for each element. graph with an adjacency list. Union

Union loops over every element and just adds a new edge: costs O(1).

updates the ID of the representative: But find must search the entire

costs O(n). Find costs O(1). connected component: costs O(n).



: Represent the sets as trees. Use the roots of the trees as
the representative element.

* Representation: Store a parent pointer for each node. Roots have no
parent (by convention, p(x) = x for roots).
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* MakeSet(x): * Link(x,y)

C~eake OC
Cet P & PR) < =

* Find(x): _
Gk up pocat i

unHA 1'60'4' CK} O\
 Union(x, y): [{) d(
Link ( Fird (), Find (5)) éé



Theorem: Let n be the current number of elements in the sets (i.e., the
number of MakeSet operations performed so far). There exists inputs for
which every find costs O(n).
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* The bad performance was caused by long chains of nodes...
e Can we just... not do that?

: When performing a Union, make the smaller tree a
child of the larger tree. If they’re the same size, then pick arbitrarily.

* We should store an extra field s(x) that knows the size of the trees
* s(x) is the size of the tree rooted at x (we don’t care about non-roots)



Union-by-size Implementation
* Link(x, y):
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Theorem: Let nn be the current number of elements in the sets. Using
union-by-size, every Link operation costs O(1) and every Find operation
costs O(log n) in the worst-case.
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* We just made Union better. Can we instead/also make Find better?

: When performing a Find, point every node along
the path at its current root/representative element.




Path compression implementation

* Find(x):
) pld#
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* To avoid arbitrary constants in the analysis, we will once again work in
a simplified cost model. All our analyses will be asymptotically valid
in the word RAM up to constant factors.

costs 1
costs 1
costs number of nodes touched

* Goal: of O(log n) for each operation



Theorem: Let n be the current number of elements in the sets. Using path
compression (but not union-by-size), in our cost model, the of
MakeSet is 1, Link is (1 4+ log n), and Find is (2 + log n).

e Observation: is what matters

Je—TB K

e Balanced trees are always fast, imbalanced trees are slow

* How do we measure how balanced a tree is at a ?



Definition (heavy/light): Given a node u and its parent p, call a node:
if size(u) > % size(p), i.e., u contains a majority of p’s descendants

o 1. : : )
if size(u) < 551ze(p), i.e., u contains at most half of p’s descendants

* Root is neither heavy nor light (it has no parent)
* In a perfectly balanced tree, every node is light (except root)

* In a chain (the worst-balanced tree), every node is heavy (except root)

2 kaf



Balanced or imbalanced?

Lemma (light lemma): On any root-to-leaf path in any tree of n nodes, there are at
most log n light nodes.

Definition (Light):

ﬁ size(u) < %size(p),

Some Fmt?j 78S 6@%@.’
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* Find costs #nodes touched = (1 + #heavy + #light).
* We know that #light < logn (light lemma)
* So, Find costs at most (1 + log n + #heavy).

* We want to define a that will save up and pay for
the cost of touching the heavy nodes o his b

ac =1+ logn + #heavy + A® 4 be ~ ""#/'e@vj
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e Observation: A node can have

* Potential potential function idea

O(F) = 4’”%3 noole4

* Problem: Can we prove that the number of heavy nodes decreases?

» Exercise: Draw a scenario where a path compression operation does
not decrease the number of heavy nodes.



Too many heavy nodes!

e Exercise: Draw a scenario where a path compression operation does
not decrease the number of heavy nodes.
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* Observation: A node can have but moving it
does not necessarily reduce the number of heavy children (a sibling
may become heavy in its place)

* However, is there a maximum number of times this can happen?
* Moving the heavy child the size of the subtree!

* Therefore, the subtree of node x with size s(x) can have its heavy
child moved at most bgs (Size(x)) times!




* Define our potential function to be:

O (F) = Z log(S'z@(‘*D
M nodes —> 1"

* Nice properties:
* Initially zero (all trees start at size 1) @ CSM) >, @ (SD)
* Always non-negative
* Increases when we perform a Link
e Decreases when we perform a Find



P = < log (Size())

: MakeSet does not change ®(F)

{

AR log(1) = O

: The MakeSet operation has an amortized cost of 1



P = Z lg(sizelw)

: A link operation at most increases ®(F) by logn
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: A link operation has amortized cost at most 1 + log n



D - = oy (512 ()

: A Find operation decreases ®(F) by at least #heavy nodes — 1

e Consider u with parent p (other than r) on the Find path
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Analysis of Find

Corollary (cost of Find): Find has amortized cost at most (2 + log n)
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Summary of Union-Find

* Union-Find with union by size: o (r\)
* Link: 0(1)
* Find: O(log n) worst-case

* Union-Find with path compression:
* Link: O(log n) amortized
* Find: O(log n) amortized

* Union-Find with both! (Not proven in this class):
* Link: O(a(n)) amortized
* Find: O(a(n)) amortized

» Q(a(n)) is also a lower bound so this is optimal! (_ Text 600k | CLES)
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