Algorithm Design and Analysis

Amortized Analysis (The Potential Function Method)

Roadmap for today

- Learn about (or review) amortized analysis
- See the *method of potential functions* for amortized analysis
- Practice amortized analysis on dynamic arrays / lists

Arrays and Lists (aka Dynamic arrays)

- Array: A fixed-size container of items with constant-time access
- List: A container supporting constant-time access and append
 - Initialize(): Creates an empty list
 - **Append**(x): Insert x at the end of the list
 - **Get**(i): Return the ith element of the list

Naïve list algorithm: Append creates a new array of length n+1 and copies over every element of the old list. **Cost:** O(n)

Array-doubling List

Doubling algorithm:

- Maintain an array of some capacity $c \ge 1$
- The first n slots contain the list items, so $c \ge n$
- To append:
 - If c = n, allocate a new array with capacity c' = 2c, then move existing items
 - ullet Place the new item at position n and increment n

Complexity:

• Best case: O(1)

• Worst case: O(n)

Amortized Analysis

Key idea: Analyze the cost of a **sequence of operations** on the data structure, instead of focusing on the cost of a **single operation**.

The aggregate method: Take a worst-case sequence of operations and compute the total cost. The amortized cost of each operation is the average cost, i.e., the total divided by the number of operations.

Example: If in any sequence of m operations, the total cost is at most 5m, then the amortized cost of an operation is at most 5

Cost model

• We need to choose a **cost model** to work with. We *could* just use the word RAM, except then we must deal with lots of unknown arbitrary constants (since the word RAM doesn't care about constants).

Array cost model:

- Writing a value into the array costs 1
- Moving an item from one array to another costs 1
- Everything else is free

The analysis

Lemma: The cost of any sequence of m append operations using the doubling algorithm is at most 3m

- After m appends, $c = \lceil \lceil m \rceil \rceil$ (smallest power of 2 at least m)
- $\lceil \lceil m \rceil \rceil < 2m$
- The final grow operation costs c/2
- The previous grow costs c/4 and so on
- Total cost for grows is less than m + m/2 + m/4 + ... < 2m
- Total cost for appends is m

The analysis

Theorem: The amortized cost (using the aggregate method) of appendusing the doubling algorithm is 3

Proof: The total cost of m appends is 3m, therefore by the aggregate method, the amortized cost of append is 3

The Potential Function Method

The Potential Function Method

The potential method: We define a potential function Φ , where

 Φ : {data structure states} $\rightarrow \mathbb{R}$

Say that an operation takes the data structure from state S_{i-1} to S_i , then we define the *amortized cost* of operation i:

$$ac_i = c_i + \Phi(S_i) - \Phi(S_{i-1})$$

(of operation i) (of operation i)

Change in potential

Why is this useful?

Claim: If
$$\Phi(S_m) \ge \Phi(S_0)$$
, then

$$\sum_{i=1}^{m} c_i \le \sum_{i=1}^{m} ac_i$$

$$\sum_{i=1}^{m} ac_i = \sum_{i=1}^{m} (c_i + \Phi(S_i) - \Phi(S_{i-1}))$$

$$=\sum_{i=1}^{m}c_{i}+\Phi(S_{m})-\Phi(S_{0})$$

So
$$\sum_{i=1}^{m} c_i = \sum_{i=1}^{m} ac_i + \Phi(S_0) - \Phi(S_m)$$

• **Strategy**: Educated guessing + trial and error

Key idea:

- Cheap operations should increase the potential (their amortized cost will be higher than their actual cost)
- Expensive operations should decrease the potential (their amortized cost will be lower than their actual cost)

Lists: State = $\{n: \text{number of elements}, c: \text{capacity}\}$

- Useful trick: Split complex operations into smaller "sub-operations"
 - We split append into "grow" and "insert"
 - Append is grow + insert
 - Insert always costs 1, no matter what, no cases needed
 - Results in fewer cases to consider

- Let's guess a potential function!
- Insert: potential goes up, grow: potential goes down

Guess #1

$$\Phi(n,c) = n - c$$

Potential is always non-positive (why?)

Let's try to come up with a potential where the math is easier

Guess #2

$$\Phi(n,c) = n - \frac{c}{2}$$

Non-negative for $n \ge 1$. Why?

	ac	cost	$\Phi(S_{i-1})$	$\Phi(S_i)$	ΔΦ
Insert	2	1	n-c/2	(n+1)-c/2	1
Grow	n/2	n	n/2 = c/2	0	-n/2

Guess #3 (Correct)

$$\Phi(n,c) = 2(n - \frac{c}{2})$$

	ac	cost	$\Phi(S_{i-1})$	$\Phi(S_i)$	ΔΦ
Insert	3	1	2(n-c/2)	2(n+1-c/2)	2
Grow	0	n	n = c	0	-n

 $ac_append \le ac_insert + ac_grow = 3 + 0$

The final potential

$$\Phi(n,c) = 2(n - \frac{c}{2})$$

$$\Phi(S_m) \ge 0$$

$$\Phi(S_0) = -1$$

A more-dynamic array

- We can add a "pop" operation to our list: removes the last item
- We want to not use space larger than $\Theta(n)$ to store a list of size n
 - append(x): Insert x at the end of the list
 - insert(x): Place x in position n, then increment n
 - **\blacksquare grow**(): Double the capacity c then move the n items
 - pop(): Remove the last element of the list
 - erase(): Erase the last item and decrement $n \leftarrow costs 1$
 - **shrink**(): Reduce the capacity c by half then move the n items
- Question: When to shrink? n = c/4 (why not n = c/2?)
- **Property:** After a grow or shrink, n = c/2

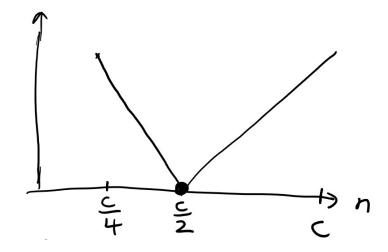
Engineering the potential function

• Design requirements:

- When appending above ½ capacity, potential goes up
- Grow "spends" the potential and brings it back to zero
- When popping below ½ capacity, potential goes up
- Shrink "spends" the potential and brings it back to zero

$$\Phi(n,c) = 2\left(n - \frac{c}{2}\right) \quad \text{if } n \ge \frac{c}{2}$$

$$= \left(\frac{c}{2} - n\right) \quad \text{if } n < \frac{c}{2}$$



The analysis

$$\Phi(n,c) = \begin{cases} 2\left(n - \frac{c}{2}\right) & \text{if } n \ge \frac{c}{2} \\ \left(\frac{c}{2} - n\right) & \text{if } n < \frac{c}{2} \end{cases}$$

	ас	С	$\Phi(S_{i-1})$	$\Phi(S_i)$	ΔΦ
Insert	≤ 3	1	-	-	≤ 2
Grow	0	n	n=c	0	-n
Erase	≤ 2	1	-	-	≤1
Shrink	0	n	n=c/4	0	-n

The result

$$\Phi(n,c) = \begin{cases} 2\left(n - \frac{c}{2}\right) & \text{if } n \ge \frac{c}{2} \\ \left(\frac{c}{2} - n\right) & \text{if } n < \frac{c}{2} \end{cases}$$

 $ac_pop \le ac_erase + ac_shrink \le 2 + 0$

Wait! What about $\Phi(S_m)$ and $\Phi(S_0)$. Don't forget those!

 $\Phi(S_m) \ge 0$, but $\Phi(S_0) = 1$ if say, we initialize with c = 2 and n = 0

So the total cost is at most $3 \cdot (\# \text{ operations}) + 1$

Can just say initialization costs 1, so total cost $\leq 3 \cdot (\# \text{ operations})$

Summary

- Potential functions are useful, but tricky
- Designing them requires careful guessing and checking. Usually not obvious!
- Design potentials so that they go up for cheap operations, and down for expensive operations