
Algorithm
Design and Analysis
Amortized Analysis (The Potential Function Method)
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Roadmap for today

• Learn about (or review) amortized analysis

• See the method of potential functions for amortized analysis

• Practice amortized analysis on dynamic arrays / lists
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Arrays and Lists (aka Dynamic arrays)

• Array: A fixed-size container of items with constant-time access

• List: A container supporting constant-time access and append
• Initialize():  Creates an empty list
• Append(x):  Insert x at the end of the list
• Get(i): Return the ୲୦ element of the list
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Naïve list algorithm:  Append creates a new array of length and 
copies over every element of the old list.  Cost:



Array-doubling List

Doubling algorithm:
• Maintain an array of some capacity
• The first slots contain the list items, so 
• To append:

• If , allocate a new array with capacity ᇱ , then move existing items
• Place the new item at position and increment 
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Complexity:
• Best case: 
• Worst case: 

GROW OPERATION



Amortized Analysis

Key idea: Analyze the cost of a sequence of operations on the data 
structure, instead of focusing on the cost of a single operation.
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The aggregate method: Take a worst-case sequence of operations and 
compute the total cost.  The amortized cost of each operation is the 
average cost, i.e., the total divided by the number of operations.

Example:  If in any sequence of operations, the total cost is at most 5m, then the 
amortized cost of an operation is at most 5



Cost model

• We need to choose a cost model to work with.  We could just use the 
word RAM, except then we must deal with lots of unknown arbitrary 
constants (since the word RAM doesn’t care about constants).

• Array cost model:
• Writing a value into the array costs 
• Moving an item from one array to another costs 
• Everything else is free
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The analysis

Lemma: The cost of any sequence of append operations using the 
doubling algorithm is at most 
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• After m appends, c = (smallest power of 2 at least m)
•
• The final grow operation costs 
• The previous grow costs and so on
• Total cost for grows is less than m + m/2 + m/4 + … < 2m
• Total cost for appends is m



The analysis

Theorem: The amortized cost (using the aggregate method) of append 
using the doubling algorithm is 3
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Proof:  The total cost of appends is , therefore by the aggregate 
method, the amortized cost of append is 3



The Potential Function 
Method
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The Potential Function Method
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The potential method: We define a potential function , where

Say that an operation takes the data structure from state ௜ିଵ to ௜, 
then we define the amortized cost of operation :

௜ ௜ ௜ ௜ିଵ

Amortized cost
(of operation )

Actual cost
(of operation ) Change in potential



Why is this useful?

Claim: If ௠ ଴ , then

௜

௠

௜ୀଵ

௜

௠

௜ୀଵ
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+ 

So



Analyzing lists using potentials

• Strategy:  Educated guessing + trial and error
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Key idea:
• Cheap operations should increase the potential (their amortized cost 

will be higher than their actual cost)

• Expensive operations should decrease the potential (their amortized 
cost will be lower than their actual cost)



Analyzing lists using potentials

• Useful trick:  Split complex operations into smaller “sub-operations”
• We split append into “grow” and “insert”
• Append is grow + insert
• Insert always costs 1, no matter what, no cases needed
• Results in fewer cases to consider
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Lists:  State = ,  c: capacity}

• Cheap operation:  Insert item. goes up

• Expensive operation:  Grow! goes down



Analyzing lists using potentials

• Let’s guess a potential function!
• Insert: potential goes up,  grow: potential goes down

Guess #1

Potential is always non-positive (why?)

Let’s try to come up with a potential where the math is easier
14



Analyzing lists using potentials

Guess #2

15

௜௜ିଵcostac

Insert

Grow

Non-negative for n . Why?

n-c/22 1 (n+1)-c/2 1

n n/2 = c/2 0 -n/2n/2



Analyzing lists using potentials

Guess #3 (Correct)
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௜௜ିଵcostac

Insert

Grow

ac_append ac_insert + ac_grow = 3 + 0

1 2(n-c/2) 2(n+1-c/2) 23

0n n = c -n0



The final potential

௠

଴
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A more-dynamic array

• We can add a “pop” operation to our list: removes the last item
• We want to not use space larger than to store a list of size 
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• append(x):  Insert x at the end of the list
 insert(x):  Place x in position , then increment 
 grow():     Double the capacity then move the items

• pop(): Remove the last element of the list
 erase():      Erase the last item and decrement 
 shrink():     Reduce the capacity by half then move the n items

• Question: When to shrink? n = c/4  (why not n = c/2?)

costs 1

• Property:  After a grow or shrink, 



Engineering the potential function

• Design requirements:
• When appending above ½ capacity, potential goes up
• Grow “spends” the potential and brings it back to zero
• When popping below ½ capacity, potential goes up
• Shrink “spends” the potential and brings it back to zero

ୡ

ଶ

ୡ

ଶ

ୡ

ଶ

ୡ

ଶ
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The analysis
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௜௜ିଵcac

Insert

Grow

Erase

Shrink

1 - -

n n=c 0 -n0

1 - - 12

n n=c/4 0 -n0



The result

Wait! What about ௠ and ଴).  Don’t forget those!
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ac_pop ac_erase + ac_shrink 2 + 0

but if say, we initialize with c = 2 and n = 0

So the total cost is at most 3 (# operations) + 1

Can just say initialization costs 1, so total cost 3 (# operations) 



Summary

• Potential functions are useful, but tricky

• Designing them requires careful guessing and checking.  Usually not 
obvious!

• Design potentials so that they go up for cheap operations, and down 
for expensive operations

22


