Lecture: The Data
Stream Model

David Woodruff

Data Streams

* A stream is a sequence of data, that is too large to be stored in available memory

* Examples

Internet search logs

* Network Traffic
T, O Sensor Node
Sensor networks O Sensor Nodd

Scientific data streams (astronomical, genomics, physical simulations)...

Streaming Model

!

 Stream of elements a,, ..., a,, ... each from an alphabet X and
taking b bits to represent

 Single or small number of passes over the data

e Almost all algorithms are randomized and approximate
» Usually necessary to achieve efficiency
 Randomness is in the algorithm, not the input

* Goals: minimize space complexity (in bits), processing time

Let ajy.q =< ay, ..., a; > be the first t elements of the stream

Suppose aq, ..., a; are integers in {2 +1,-2°+2 ..-1,0,1,2,.. 2P-1}
* Example stream: 3,1, 17, 4,-9, 32,101, 3,-722, 3,900, 4, 32

How many bits do we need to maintain f(af;.q)= Xi=q . tai?

e Outputs on example: 3, 4, 21, 25, 16, 48, 149, 152, -570, -567, 333, 337, 379, ...

* O(b +logt)

How many bits do we need to maintain f(ap;.q)= _mlaxtai?
1=1,..,

e Outputs on example: 3,3,17,17,17,32,101, 101, 101, 101, 900, 900, 900, ...
* O(b) bits

* The median of all the numbers we’ve stored so far
 Example stream: 3,1, 17,4,-9, 32,101, 3,-722, 3,900, 4, 32
* Median: 3,1,3,3,3,3,4,3, ..
* This seems harder...

* The number of distinct elements we’ve seen so far?
e Outputs on example: 1, 2,3,4,5,6,7,7,8,8,9,9,9, ..

* The elements that have appeared at least an e-fraction of the time?
These are the e-heavy hitters

e Cover today

* Internet router may want to figure out which IP connections are heavy
hitters, e.g., the ones that use more than .01% of your bandwidth

* Or maybe the router wants to know the median (or 90-th percentile)
of the file sizes being transferred

* Hashing is a key technique

S; is the multiset of items at time t,so Sy, = @, S; = {a;}, ...,S; ={aq, ..., a;},
count.(e) = |{i € {1, 2, ..., t} such that a; = e}|

e € X is an e-heavy hitter at time t if count,(e) > € -t

Given € > 0, can we output the e-heavy hitters?

.1 _ :
* Let’s output a set of size . containing all the e-heavy hitters

Note: can output “false positives” but not allowed to output “false negatives”, i.e.,
not allowed to miss any heavy hitter, but could output non-heavy hitters

* Example: E, D, B, D, Ds D, B, A, C, B4 B, E, E, E, Eq5, E
(the subscripts are just to help you count)

e At time 5, the element D is the only 1/3-heavy hitter
* At time 11, both B and D are 1/3-heavy hitters

* At time 15, there is no 1/3-heavy hitter

* At time 16, only E is a 1/3-heavy hitter

Can’t afford to keep counts of all items, so how to maintain a short
summary to output the e-heavy hitters?

* First find a .5-heavy hitter, that is, a majority element:
memory < empty and counter <0
when element a; arrives
if (counter == 0)
memory < a; and counter « 1
else
if a; = memory
counter + +
else
counter - -
(discard ay)
* At end of the stream, return the element in memory

31211

Memory = 3, Count =1
Memory = 3, Count =0
Memory =2, Count =1
Memory =2, Count =0
Memory =1, Count=1

If there is no majority element, we output a false positive, which is OK

If there is a majority element, we will output it. Why?

When we discard an element a;, we throw away a different element

When we throw away a copy of a majority element, we throw away another element

* Either majority element is in memory, or majority element arrives in stream but
some other item is in memory

Majority element is more than half the total number of elements, so can’t throw
away all of them

Setk = H —1
Array T[1, ..., k], where each location can hold one element from X

Array C[1, ..., k], where each location can hold a non-negative integer
Cl[i] « 0and T[i] « L forall i

If there is j € {1, 2, ..., Kk} such that a, = T[j], then C[j] + +
Else if some counter C[j] =0 then T[j] « a;and C[j] « 1

Else decrement all counters by 1 (and discard element ay)

est.(e) = CJj] if e == TI[j] for some j, and est.(e) = 0 otherwise

* Lemma: 0 < count(e) — esti(e) < o Se-t

* Proof: count;(e) = esti(e) since we never increase a counter for e unless we see e

If we don’t increase est(e) by 1 for an update to e, we decrement k counters and
discard the current update to e

- Either e is in memory and we decrement its count, or e is a stream update and we
discard it

So we drop k+1 distinct stream updates, but there are t total updates, so we won’t
increase est.(e) by 1, when we should, at most : < € - ttimes

* At any time t, all e-heavy hitters e are in the array T. Why?

* For an e-heavy hitter e, we have count (e) >€ -t

* But esti(e) = count(e) —€e-t

* Soesti(e)>0,soeisinarray T

* Space is O(k (log(|Z|) + log t)) = O(1/ €) (log(|X]) + log t) bits

* Suppose we can delete elements e that have already appeared
* Example: (add, A), (add, B), (add, A), (del, B), (del, A), (add, C)

 Multisets at different times
SO — Q)' Sl — {A}, SZ — {A, B}, SS — {A, A, B}, S4 — {A, A}, SS — {A},
S6 — {A, C},

* “active” set S; has size |S;| = X .ex count(e) and can grow and shrink

* Query “What is count(e)?”, should output est;(e) with:
Pr[|est.(e) — count(e)| < €|S{|]] =1—-6

* Want space close to our previous O(1/ €) (log(|Z|) + log t) bits
* Leth:X - {0,1,2, ...,k — 1} be a hash function (will specify later)
* Maintain an array A[O, 1, ..., k-1] to store non-negative integers

when update a; arrives:
if a; = (add, e) then A[h(e)] + +
else a; = (del, e), and A[h(e)] — —

* esty(e) = Alh(e)]

* Alh(e)] = Yores counti(e’) - 1(h(e’) = h(e)), where 1(condition)
evaluates to 1 if the condition is true, and evaluates to O otherwise

* Alh(e)] = count((e) +), counti(e’) - 1(h(e") = h(e)),

e/ e

* esti(e) — count,(e) = count(e’) - 1(h(e") = h(e))

e/ #e

* Since we have a small array A with k locations, there are likely many
e’ # e with h(e’) = h(e), but can we bound the expected error?

* Recall: Family H of hash functions h: U ->{0, 1, ..., k-1} is universal if for all x # vy,
1
= < —
JPrlhC) =h@y)] <
* There is a simple family where h can be specified using O(log |U|) bits. Here, |U| = |Z]

* E[esti(e) — counti(e)] = E[X /., counti(e’) - 1(h(e’) = h(e))]
= Diorze counti(e’) - E[1(h(e’) = h(e))]
= Dierze cOunty(e’) - Prfh(e’) = h(e)]
, 1
< Ze'ie Countt(e) . (K)
_ |St|— county(e) < IS¢
- k — K
k = 1/€ makes this at most € - |S|. Space is O(%) counters plus storing hash function

* Have 0 < est(e) — counti(e) < |S¢|/k in expectation from CountMin
» With probability at least 1/2, est;(e) — count.(e) < 2|S¢|/k Why?

* Can we make the success probability 1-6?
* Independent repetition: pick m hash functions hy, ..., h, with
hi:Z - {0,1,2,..,k— 1} independently from H. Create array A; for h;

when update a; arrives:
for eachifrom1tom
if a, = (add, e) then A;[h;(e)] + +
else a; = (del, e) and A;[h;(e)] — —

What is our new estimate of count(e)?

T

best;(e) := mii] A;lhi(e)].
T

Each A;[h;(e)] is an overestimate to count;(e)

m
By independence, Pr[for all i, Aj[h;(e)] — count,(e) = 2|S:|/K] < (%)
Fork =Z2and m = log, () the error is at most €|S;| with probability 1-6

€
1
Space:m -k = O(()) counters each of O(lg t) bits
m - O(log |Z|) = O(log()logIZI) bits to store hash functions

 Our new estimate best(e) satisfies
Pr|[|best.(e) — count.(e)| < €|S¢|]] =1 -6

1 1
and uses O(Og(2 ik + log()log |Z|) bits of space

* What if we want with probability 9/10, simultaneously for all e,
|best.(e) — count.(e)| < €|S¢|?

e Set d = % and apply a union bound over all e € X

