
Topic 2: Concrete Models and
Tight Upper and Lower Bounds

David Woodruff

Theme: Tight Upper and Lower Bounds

• Number of comparisons to sort an array

• Number of exchanges to sort an array

• Number of comparisons needed to find the largest and second-largest
elements in an array

Formal Model

• Look at models which specify exactly which operations may be
performed on the input, and what they cost

• E.g., performing a comparison, or swapping a pair of elements

• An upper bound of f(n) means the algorithm takes at most f(n) steps
on any input of size n

• A lower bound of g(n) means for any algorithm there exists an input
for which the algorithm takes at least g(n) steps on that input

Sorting in the Comparison Model

• In the comparison model, we have n items in some initial order
An algorithm may compare two items (asking is ୧ ୨?) at a cost of 1

• Moving the items is free

• No other operations allowed, such as XORing, hashing, etc.

• Sorting: given an array a = ଵ ୬ , output a permutation so that
஠ ଵ ஠ ୬ in which the elements are in increasing order

Sorting Lower Bound

• Theorem: Any deterministic comparison-based sorting algorithm must
perform at least ଶ comparisons to sort n elements in the worst case

• I.e., for any sorting algorithm A and , there is an input I of size n so
that A makes comparisons to sort I.

• Need to rule out any possible algorithm

• Proof is information-theoretic

Encoding Argument

• Proof: a deterministic algorithm is a sequence of comparisons “ is ୧ ୨?”

• Encode the result of the i-th comparison as a bit ୧

• Since the algorithm is deterministic, the result of previous comparisons determines
what the next comparison asked is

• Encode the results of comparisons as ଵ ଶ ℓ, where is the total number of
comparisons. If ଶ , then there are ℓ possible bitstrings. So, two
different input permutations ᇱ on {1, 2, 3, …, n} result in the same bitstring

• But there is no output permutation that is correct on both and ᇱ. QED

Encoding Argument Notes

• You could have non-distinct values 1 2 n in the sorting problem but our lower
bound only considered the case when ଵ ଶ ୬ were distinct

• That’s okay, since a correct sorting algorithm must in particular sort any input for
which ଵ ଶ ୬ are distinct

• For any problem, we can choose a subset S of all possible inputs to the problem and
prove a lower bound for any algorithm which is correct on inputs in S

• The lower bound we obtain then holds for algorithms correct on all inputs
(not only those in S)

Sorting Lower Bound

• Information-theoretic: need bits of information about the input
before we can correctly decide on the output

•

•
୬

ଶ

୬

ଶ

•
୬

ୣ

୬
୬ , so

•

Sorting Upper Bounds

• Suppose for simplicity n is a power of 2

• Binary insertion sort: using binary search to insert each new element,
the number of comparisons is ୩ୀଶ,…,୬

• Note: may need to move items around a lot, but only counting comparisons

• Mergesort: merging two sorted lists of n/2 elements requires at most n-1
comparisons

• Unrolling the recurrence, total number of comparisons is
୬

ଶ

୬

ସ

୬

ଶ

Selection in the Comparison Model
• How many comparisons are necessary and sufficient to find the maximum of n

elements in the comparison model?

• Claim: n-1 comparisons are sufficient
• Proof: scan from left to right, keep track of the largest element so far

• For lower bounds, what does our earlier information-theoretic argument give?
• Only , which is too weak

• Also, we have to look at all elements, otherwise we may have not looked at the largest,
but that can be done with n/2 comparisons, also not tight

Lower Bound for Finding the Maximum
• Claim: n-1 comparisons are needed in the worst-case to find the maximum of n

elements

• Proof: each time a comparison is made, one item “loses” and one item “wins”

• Every item that is not the maximum must lose at least one comparison.
Otherwise, suppose both ୧ and ୨ never lost

• If algorithm outputs ୧, then you can make ୨ arbitrarily large and preserve all
comparisons. Similarly, if algorithm outputs ୨, can make ୧ arbitrarily large

• Thus, n-1 comparisons are necessary

Decision Tree Lower Bound for Maximum
123
132
213
231
312
321

213
312
321

123
132
231

312
321 213 123 132

231

ଶ ଵ?
YES NO

YES NO NOYES

ଶ ଷ ?ଷ ଵ?

Finding the maximum
of 3 numbers requires

all leaves to be at depth
at least 2

Output: Position 3Output: Position 1 Output: Position 3 Output: Position 2

Lower Bound for Finding the Maximum

• Recap: upper and lower bounds match at n-1

• Argument different from information-theoretic bound for sorting

• Instead,
• if algorithm makes too few comparisons on some input In and

outputs Out,
• find another input In’ where the algorithm makes the same

comparisons and also outputs Out,
• but Out is not a correct output for In’

An Adversary Argument
• If algorithm makes “too few” comparisons, fool it into giving an incorrect answer

• Any deterministic algorithm sorting 3 elements requires at least 3 comparisons
• If < 2 comparisons, some element not looked at and the algorithm is incorrect
• After first comparison, 3 elements are w, l, and z, the winner and loser of the

first comparison, as well as the uninvolved item
• If the second query is between w and z, say

• w is larger
• If the second query is between l and z, say

• l is smaller
• Algorithm needs one more comparison for correctness

• Goal: answer comparisons so that (a) answers consistent with some input In,
(b) answers make the algorithm perform “many” comparisons

First and Second Largest of n Elements

• How many comparisons are necessary (lower bound) and sufficient
(upper bound) to find the first and second largest of n distinct
elements?

• Claim: n-1 comparisons are needed in the worst-case

• Proof: need to at least find the maximum

What about Upper Bounds?

• Claim: 2n-3 comparisons are sufficient to find the first and second-
largest of n elements

• Proof: find the largest using n-1 comparisons, then find the largest of
the remainder using n-2 comparisons, so 2n-3 total

• Upper bound is 2n-3, and lower bound n-1, both are but can we
get tight bounds?

Second Largest of n Elements Upper Bound
• Claim: comparisons are sufficient to find the first and

second-largest of n elements
• Proof: find the maximum element using n-1 comparisons by grouping

elements into pairs, finding the maximum in each pair, and recursing

• What can we say about the second maximum?
• Must have been directly compared to the maximum and lost, so lg(n)-1

additional comparisons suffice. Kislitsyn (1964) shows this is optimal

Sorting in the Exchange Model

• Consider a shelf containing n unordered books to be arranged
alphabetically. How many swaps do we need to order them?

• In the exchange model, you have n items and the only operation
allowed on the items is to swap a pair of them at a cost of 1 step

• All other work is free, e.g., the items can be examined and
compared

• How many exchanges are necessary and sufficient?

Sorting in the Exchange Model

• Claim: n-1 exchanges is sufficient
• Proof: here’s an algorithm:
• In first step, swap the smallest item with the item in the first location
• In second step, swap the second smallest item with the item in the

second location
• In k-th step, swap the k-th smallest item with the item in the k-th

location
• If no swap is necessary, just skip a given step

• No swap ever undoes our previous work
• At the end, the last item must already be in the correct location

Lower Bound for Sorting in Exchange Model

• Claim: n-1 exchanges are necessary in the worst case
• Proof: create a directed graph in which the edge (i,j) means the book

in location i must end up in location j

• Graph is a set of cycles
• Indegree and Outdegree of each node is 1

Lower Bound for Sorting in Exchange Model

• What is the effect of exchanging any two elements in the same cycle?
• Suppose we have edges ଵ ଵ and ଶ ଶ and swap elements in locations ଵ and ଶ
• This replaces these edges with ଶ ଵ and ଵ ଶ since now the item in position ଶ

need to go to ଵ and item in position ଵ need to go to ଶ
• Since ଵ and ଶ in the same cycle, now we get two disjoint cycles

ଵ

ଵ

ଶ

ଶ

Lower Bound for Sorting in Exchange Model

• What is the effect of exchanging any two elements in different cycles?
• If we swap elements ଵ and ଶ in different cycles, similar argument

shows this merges two cycles into one cycle

ଵ

ଵ

ଶ

ଶ

Lower Bound for Sorting in Exchange Model

• What is the effect of exchanging any two elements in the same cycle?
• Get two disjoint cycles

• What is the effect of exchanging any two elements in different cycles?
• Merges two cycles into one cycle

• How many cycles are in the final sorted array?
• n cycles

• Suppose we begin with an array [n, 1, 2, …, n-1] with one big cycle
• Each step increases the number of cycles by at most 1, so need n-1

steps

Query Models and Evasiveness

• Let G be the adjacency matrix of an n-node graph
• G[i,j] = 1 if there is an edge between i and j, else G[i,j] = 0

• In 1 step, we can query any element of G. All other computation is free
• How many queries do we need to tell if G is connected?
• Claim: n(n-1)/2 queries suffice
• Proof: Just query every pair {i,j} to learn G, then check if G is connected

• What about lower bounds?

Connectivity is an Evasive Graph Property
• Theorem: n(n-1)/2 queries are necessary to determine connectivity
• Proof: adversary strategy: given a query G[u,v], answer 0 unless the graph

consistent with all of your responses so far, which also satisfies G[u’, v’] = 1 for
each unasked pair {u’,v’}, is disconnected

• Invariant: for any unasked pair {u,v}, the graph revealed so far has no path
from u to v

• Reason: consider the last edge {u’,v’} revealed on that path. Could have
answered 0 and kept same connectivity by having edge {u,v} be present

u’

v’

u
v

Connectivity is an Evasive Graph Property

• Theorem: n(n-1)/2 queries are necessary to determine connectivity
• Proof: adversary strategy: given a query G[u,v], answer 0 unless the

graph consistent with all of your responses so far, which also satisfies
G[u’, v’] = 1 for each unasked pair {u’,v’}, is disconnected

• Invariant: for any unasked pair {u,v}, the graph revealed so far has no
path from u to v

• Suppose there is some unasked pair {u,v} by the algorithm
• If algorithm says “connected”, we place all 0s on unasked pairs
• If algorithm says “disconnected”, we place all 1s on unasked pairs

• So algorithm needs to query every pair

