Topic 2: Concrete Models and Tight Upper and Lower Bounds

David Woodruff

Theme: Tight Upper and Lower Bounds

- Number of comparisons to sort an array
- Number of exchanges to sort an array
- Number of comparisons needed to find the largest and second-largest elements in an array

Formal Model

- Look at models which specify exactly which operations may be performed on the input, and what they cost
 - E.g., performing a comparison, or swapping a pair of elements
- An upper bound of f(n) means the algorithm takes at most f(n) steps on any input of size n
- A lower bound of g(n) means for any algorithm there exists an input for which the algorithm takes at least g(n) steps on that input

Sorting in the Comparison Model

- In the comparison model, we have n items in some initial order An algorithm may compare two items (asking is $a_i > a_j$?) at a cost of 1
 - Moving the items is free
- No other operations allowed, such as XORing, hashing, etc.
- Sorting: given an array $a = [a_1, ..., a_n]$, output a permutation π so that $[a_{\pi(1)}, ..., a_{\pi(n)}]$ in which the elements are in increasing order

Sorting Lower Bound

- Theorem: Any deterministic comparison-based sorting algorithm must perform at least $\lg_2(n!)$ comparisons to sort n elements in the worst case
- I.e., for any sorting algorithm A and $n \ge 2$, there is an input I of size n so that A makes $\ge \lg(n!) = \Omega(n \log n)$ comparisons to sort I.
- Need to rule out any possible algorithm
- Proof is information-theoretic

Encoding Argument

- Proof: a deterministic algorithm is a sequence of comparisons " is $a_i \le a_j$?"
- Encode the result of the i-th comparison as a bit b_i
- Since the algorithm is deterministic, the result of previous comparisons determines what the next comparison asked is
- Encode the results of comparisons as $b_1, b_2, ..., b_\ell$, where ℓ is the total number of comparisons. If $\ell < \lceil \log_2 n! \rceil$, then there are $2^\ell < n!$ possible bitstrings. So, two different input permutations $\pi \neq \pi'$ on $\{1, 2, 3, ..., n\}$ result in the same bitstring
- But there is no output permutation that is correct on both π and π' . QED

Encoding Argument Notes

- You could have non-distinct values $a_1, a_2, ..., a_n$ in the sorting problem but our lower bound only considered the case when $a_1, a_2, ..., a_n$ were distinct
- That's okay, since a correct sorting algorithm must in particular sort any input for which $a_1, a_2, ..., a_n$ are distinct
- For any problem, we can choose a subset S of all possible inputs to the problem and prove a lower bound for any algorithm which is correct on inputs in S
 - The lower bound we obtain then holds for algorithms correct on all inputs (not only those in S)

Sorting Lower Bound

• Information-theoretic: need $\lg(n!)$ bits of information about the input before we can correctly decide on the output

•
$$\lg(n!) = \lg(n) + \lg(n-1) + \lg(n-2) + ... + \lg(1) < n \lg n$$

•
$$\lg(n!) = \lg(n) + \lg(n-1) + \lg(n-2) + ... + \lg(1) > (\frac{n}{2}) \lg(\frac{n}{2}) = \Omega(n \lg n)$$

•
$$n! \in \left[\left(\frac{n}{e}\right)^n, n^n\right]$$
, so $n \lg n - n \lg e < \lg(n!) < n \lg n$
 $n \lg n - 1.443n < \lg(n!) < n \lg n$

•
$$\lg(n!) = (n \lg n) (1 - o(1))$$

Sorting Upper Bounds

- Suppose for simplicity n is a power of 2
- Binary insertion sort: using binary search to insert each new element, the number of comparisons is $\sum_{k=2,...,n} \lceil \lg k \rceil \le n \lg n$
 - Note: may need to move items around a lot, but only counting comparisons
- Mergesort: merging two sorted lists of n/2 elements requires at most n-1 comparisons
 - Unrolling the recurrence, total number of comparisons is

$$(n-1) + 2\left(\frac{n}{2} - 1\right) + 4\left(\frac{n}{4} - 1\right) + \dots + \frac{n}{2}(2-1) = n \lg n - (n-1) < n \lg n$$

Selection in the Comparison Model

- How many comparisons are necessary and sufficient to find the maximum of n elements in the comparison model?
- Claim: n-1 comparisons are sufficient
- Proof: scan from left to right, keep track of the largest element so far
- For lower bounds, what does our earlier information-theoretic argument give?
 - Only $\Omega(\log n)$, which is too weak
- Also, we have to look at all elements, otherwise we may have not looked at the largest, but that can be done with n/2 comparisons, also not tight

Lower Bound for Finding the Maximum

- Claim: n-1 comparisons are needed in the worst-case to find the maximum of n elements
- Proof: each time a comparison is made, one item "loses" and one item "wins"
- Every item that is not the maximum must lose at least one comparison. Otherwise, suppose both a_i and a_j never lost
 - If algorithm outputs a_i , then you can make a_j arbitrarily large and preserve all comparisons. Similarly, if algorithm outputs a_i , can make a_i arbitrarily large
- Thus, n-1 comparisons are necessary

Decision Tree Lower Bound for Maximum

Lower Bound for Finding the Maximum

- Recap: upper and lower bounds match at n-1
- Argument different from information-theoretic bound for sorting
- Instead,
 - if algorithm makes too few comparisons on some input In and outputs Out,
 - find another input In' where the algorithm makes the same comparisons and also outputs Out,
 - but Out is not a correct output for In'

An Adversary Argument

- If algorithm makes "too few" comparisons, fool it into giving an incorrect answer
- Any deterministic algorithm sorting 3 elements requires at least 3 comparisons
 - If < 2 comparisons, some element not looked at and the algorithm is incorrect
 - After first comparison, 3 elements are w, l, and z, the winner and loser of the first comparison, as well as the uninvolved item
 - If the second query is between w and z, say
 - w is larger
 - If the second query is between I and z, say
 - I is smaller
 - Algorithm needs one more comparison for correctness
- Goal: answer comparisons so that (a) answers consistent with some input In,
 (b) answers make the algorithm perform "many" comparisons

First and Second Largest of n Elements

 How many comparisons are necessary (lower bound) and sufficient (upper bound) to find the first and second largest of n distinct elements?

- Claim: n-1 comparisons are needed in the worst-case
- Proof: need to at least find the maximum

What about Upper Bounds?

- Claim: 2n-3 comparisons are sufficient to find the first and secondlargest of n elements
- Proof: find the largest using n-1 comparisons, then find the largest of the remainder using n-2 comparisons, so 2n-3 total
- Upper bound is 2n-3, and lower bound n-1, both are $\Theta(n)$ but can we get tight bounds?

Second Largest of n Elements Upper Bound

- Claim: $n + \lg n 2$ comparisons are sufficient to find the first and second-largest of n elements
- Proof: find the maximum element using n-1 comparisons by grouping elements into pairs, finding the maximum in each pair, and recursing

- What can we say about the second maximum?
 - Must have been directly compared to the maximum and lost, so lg(n)-1
 additional comparisons suffice. Kislitsyn (1964) shows this is optimal

Sorting in the Exchange Model

- Consider a shelf containing n unordered books to be arranged alphabetically. How many swaps do we need to order them?
- In the exchange model, you have n items and the only operation allowed on the items is to swap a pair of them at a cost of 1 step
 - All other work is free, e.g., the items can be examined and compared
- How many exchanges are necessary and sufficient?

Sorting in the Exchange Model

- Claim: n-1 exchanges is sufficient
- Proof: here's an algorithm:
- In first step, swap the smallest item with the item in the first location
- In second step, swap the second smallest item with the item in the second location
- In k-th step, swap the k-th smallest item with the item in the k-th location
 - If no swap is necessary, just skip a given step
- No swap ever undoes our previous work
- At the end, the last item must already be in the correct location

- Claim: n-1 exchanges are necessary in the worst case
- Proof: create a directed graph in which the edge (i,j) means the book in location i must end up in location j

Figure 1: Graph for input [f c d e b a g]

- Graph is a set of cycles
 - Indegree and Outdegree of each node is 1

- What is the effect of exchanging any two elements in the same cycle?
 - Suppose we have edges (i_1, j_1) and (i_2, j_2) and swap elements in locations i_1 and i_2
 - This replaces these edges with (i_2, j_1) and (i_1, j_2) since now the item in position i_2 need to go to j_1 and item in position i_1 need to go to j_2
 - Since i₁ and i₂ in the same cycle, now we get two disjoint cycles

- What is the effect of exchanging any two elements in different cycles?
 - If we swap elements i_1 and i_2 in different cycles, similar argument shows this merges two cycles into one cycle

- What is the effect of exchanging any two elements in the same cycle?
 - Get two disjoint cycles
- What is the effect of exchanging any two elements in different cycles?
 - Merges two cycles into one cycle
- How many cycles are in the final sorted array?
 - n cycles
- Suppose we begin with an array [n, 1, 2, ..., n-1] with one big cycle
- Each step increases the number of cycles by at most 1, so need n-1 steps

Query Models and Evasiveness

- Let G be the adjacency matrix of an n-node graph
 - G[i,j] = 1 if there is an edge between i and j, else G[i,j] = 0
- In 1 step, we can query any element of G. All other computation is free
- How many queries do we need to tell if G is connected?
- Claim: n(n-1)/2 queries suffice
- Proof: Just query every pair {i,j} to learn G, then check if G is connected
- What about lower bounds?

Connectivity is an Evasive Graph Property

- Theorem: n(n-1)/2 queries are necessary to determine connectivity
- Proof: adversary strategy: given a query G[u,v], answer 0 unless the graph consistent with all of your responses so far, which also satisfies G[u', v'] = 1 for each unasked pair {u',v'}, is disconnected
- Invariant: for any unasked pair {u,v}, the graph revealed so far has no path from u to v
- Reason: consider the last edge {u',v'} revealed on that path. Could have answered 0 and kept same connectivity by having edge {u,v} be present

Connectivity is an Evasive Graph Property

- Theorem: n(n-1)/2 queries are necessary to determine connectivity
- Proof: adversary strategy: given a query G[u,v], answer 0 unless the graph consistent with all of your responses so far, which also satisfies G[u', v'] = 1 for each unasked pair {u',v'}, is disconnected
- Invariant: for any unasked pair {u,v}, the graph revealed so far has no path from u to v
- Suppose there is some unasked pair {u,v} by the algorithm
 - If algorithm says "connected", we place all 0s on unasked pairs
 - If algorithm says "disconnected", we place all 1s on unasked pairs
- So algorithm needs to query every pair