Algorithm
Design and Analysis

Introduction, Algorithm Analysis, and Selection

Logistics

Who Is 15-451/15-6517

Instructors

Teaching Assistants

Arturo

Course website

Overview Staff Schedule Policies Academic Integrity] oHQ £ Ed [7) Gradescope

15-451/651: Algorithm Design and Analysis (Spring 2025)

Course Description

15-451/651 is an advanced undergraduate/masters algorithms class. We cover fundamental algorithmic modeling techniques (e g. dynamic programming, graphs,
network flows, linear programming), advanced algorithmic paradigms (e g., approximation algorithms, online algorithms, streaming algorithms), and methods for
analyzing algorithms and problems (e.g., lower bounds, amortized analysis, probabilistic analyses of randomized algonthms).

Prerequisites: A minimum grade of C in 15-210, 21-241, 15-251 (or 21-228).

Class Hours

Lectures
Tuesday and Thursday at 12:30PM to 01:50PM, DH 2315

Lecture attendance is strongly encouraged but not required.

https://www.cs.cmu.edu/~15451-s25/

e Contains course calendar with office hour schedule
* Contains all lecture notes, homework handouts, policies, etc.
* Links to other important platforms (OHQ, Ed, Gradescope)

https://www.cs.cmu.edu/~15451-s25/

* 6 Written Homework: Each has 2-3 problems. Solutions must be
typeset, not handwritten! Submitted to Gradescope.

* 3 Oral Homework: Collaborate in groups of three and present your
solutions to a TA

* 4 Programming Problems: Submitted via Gradescope.
 Officially recommended/supported languages are and

* We will accept C, Java, OCaml, Rust when possible (not guaranteed for every
assignment, and TA/instructor help will be limited.)

* Please review the lecture notes and read the problems beforehand
* Only 50-minutes long so please show up on time!

* 5% of your grade from attendance

More review and goes at a slower pace

Faster pace and cover more problems

* Evening midterms!

e Put these in your calendar right now!

Midterm one (Week 5) Midterm two (Week 10)
Tuesday February 11t Tuesday March 25t

* One-on-one tutoring is available

if you struggled with any of the prerequisite
courses (15-210, 15-251, 15-122, concepts)

* Open to anyone, space permitting

* Healthy collaboration within the rules set out by the assignments is great for
learning, but cheating is not.

Definition (Cheating): Includes, but is not limited to:

Reading/copying answers/code from online sources, books, etc.

Reading/copying answers of other people, current or former students or otherwise
Reading/copying answers obtained from generative Al tools (e.g., ChatGPT, CoPilot)
Accessing problems or solutions from past semesters (e.g., from a friend who took the
course in a previous semester, or from a website, etc.)

: We are extremely accurate at catching cheating.
In Spring 2024, we caught 50-60 cases of cheating (out of approx. 180 students)
In Fall 2024, we caught 30-40 cases of cheating (out of approx. 130 students)

* 451 is a hard course. We know that a lot of AlVs happen out of desperation, not a
premeditated plan to cheat.

* |f you are struggling with the course, please , attend
, and reach out for additional help

* If you are behind and low on time, (see the extension
request form on the course website)

* Try to start your homework early, but if you are stuck at the last minute, we don’t
close after business hours. If you reach out for homework help at the last
minute, we will almost always try to be available to help.

https://docs.google.com/forms/d/e/1FAIpQLSeqP61STzHuXV4TBdFh1z8KQzRgzR2D9TydYu5sSVo0c6agZA/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSeqP61STzHuXV4TBdFh1z8KQzRgzR2D9TydYu5sSVo0c6agZA/viewform?usp=sf_link

Now onto the class!

* We want about the properties of algorithms
e E.g., prove that it runs in a certain amount of time
e E.g., prove that it outputs the correct answer

* Important question: How exactly do we measure time?
 Answer: It depends :)
* Lots more discussion about this in the coming lectures

* We need a

» Specifies exactly what operations are permitted
 How much each operation costs (sometimes called the cost model)

Input to the algorithm consists of an array of n items in some order
The algorithm may perform comparisons (is a; < a;?) at a
Copying/moving items is free
The items are of an arbitrary type. We are not allowed to assume a type
= E.g., the items can not be assumed to be numbers
= This means we can not add, multiply, XOR the items
= \We also can not use hashing, or use elements as array indices, etc.

* As seen in 15-122 and 15-210 (and possibly elsewhere!)
* One of the most well-known algorithms in all of computer science

function quicksort(a[0 ...n — 1] : list) {
select a pivot element p = q,
let LESS = [a; such that a; < p]
let GREATER = [a; such that a; > p]
return quicksort(LESS) + [p] + quicksort(GREATER)

}

: What is the complexity of Quicksort?

Definition (Worst-case complexity): The worst-case complexity of an algorithm is the
largest cost it can incur over any possible input (usually as a function of input size n)

: The worst-case cost of QuickSort on an input of length n is ®(n?)

: By default, if not specified, we will pretty much always consider worst-case complexity.

Definition (Average-case complexity): The average-case complexity of an algorithm is
the average of the costs of the algorithm over every possible input.

Note: Mathematically, this is equivalent to the expected value of the cost of the
algorithm over an input chosen uniformly randomly.

: The average cost of QuickSort on an input of length n is @(n log n)

: We will rarely, if ever, consider average-case complexity in 15-451/651.

* The average-case performance of QuickSort is great

e But its only reliable if the input is random! An evil adversary can
always feed our code a worst-case input and ruin our day :(

* Most real-life data is not random. Hoping that data is random is not a
good way to design your algorithms.

Important idea: Instead of hoping that the input is random...
put the randomness into the algorithm!

Making it better: Randomized Quicksort

function random_quicksort(a[0 ...n — 1] : list) {
select a random pivot element p = a;
let LESS = [a; such that a; < p]
let GREATER = [a; such that a; > p]
return random_quicksort(LESS) + [p] + random_quicksort(GREATER)

}

18

: The expected number of comparisons performed by
randomized Quicksort on any input of size n is @(n log n)

IMPORTANT NOTES:

: When analyzing randomized algorithms, we are usually interested in the
expected value over the random choices to process a worst-case user input

e we are not assuming that our random-number generator gives us the worst
possible random numbers,

* we are not analyzing the algorithm for a randomly chosen input (that’s average-
case complexity!)

4)
@in practice! J What if we could efficiently
find the median element and
use that as the pivot?

Worst-case cost is ©(n?)] N N/

Average-case cost is O(n log n) J

Randomized Quicksort costs Deterministic Quicksort in
O(n log n) in expectation worst-case O(n log n) cost??

New Problem: Median finding

Problem (Median) Given a range of distinct elements a4, a,, ..., a,;, output the median.

Definition (Median): The median is the {nT_l‘ th smallest element

* More generally, we can try to solve the “k™" smallest” problem. Given a
range of distinct elements and an integer k, we want to find the element
such that there are exactly k smaller elements

e k is zero-indexed, so the minimum element is the 0t smallest element

: Start with a simple but inefficient algorithm, then optimize and remove
unnecessary steps.

Simple algorithm (k" smallest): Sort the array and output element k

 Redundancy: We are finding the k" smallest for every k

Take Iinspiration from Quicksort?

function quicksort(a[0 ...n — 1]) {

select a pivot element p = q;

let LESS = [a; such that a; < p]

let GREATER = [a; such that a; > p]

return quicksort(LESS) + [p] + quicksort(GREATER)
}

Question: If we only want the k™ number, what is wasteful here?

return quicksort(LESS) + [p] + quicksort(GREATER)
\ J \ J
Y Y

The answer is either in here = — Or the answer is in here

24

function quickselect(a|0 ...n — 1], k) {
select a pivot element p = a; for arandom i
let LESS = [a; such that a; < p]

let GREATER = [a; such that a; > p]
if k< "’ESS/ then return _quIck select (LESS, ’()

else if ~ 2 “555/ then return ?MWLW(WREATEE, h-ILEssl-l)

elsereturn P
!

: The expected number of comparisons performed by Quickselect on
an input of size n is at most 8n

: The proof is subtle because it uses probability. We must be careful to
not make false assumptions about how probability and randomness work...

Let T(n) = the expected number of comparisons performed by
Quickselect on a worst-case input of size n

TWy= n-] + E (T(X))
X7 Rsle Mmy s)ze (mml&m riebl)

: This proof is nearly, but not quite correct. It does, however, provide some
useful insight that gets us closer to a correct proof.

: What is a (good) upper bound on the expected size of the
recursive subproblem?

Cx) ¢ 22

+

So, we might try the recurrence... T (E (x)>

T n-) + T (%)

E (T(x))

. Let’s be more precise. How often is the recursive
subproblem size at most 3n/4 ?

] 5 df]

— ‘E
—

So, a better recurrence relation is

T(n) < n-| + ‘%_ T(%n) + ‘!Z’T(h)
)

Validating the recurrence relation

Tn)<2(n—1) + T(%Tn)

Exercise: Solve the recurrence or verify through substitution
that the solution satisfies T(n) < 8n

29

* Runsin O(n) time
function quickselect(a[0 ...n — 1], k) {

select a random pivot element p = a; for a random i In the
let LESS = [aj such that aj < p] .
let GREATER = [, such that a; > p] * More tightly, uses at most 8n

comparisons in expectation.
if |LESS| = k then return quickselect(LESS, k)

else if [LESS| = k then return p * An as exercise, the analysis
else return quickselect(RIGHT, k — |LESS| — 1) ¢

} can be improved to 4n
comparisons.

* Use Quickselect to select the pivot for Quicksort
e Guaranteed best-case recursion for Quicksort

* Problem?

e Randomized Quickselect is still... randomized.

* So, Quicksort would still be O(n log n) randomized, not deterministic

e Where was the randomness in Randomized QuickSelect? How can
we get rid of it?

 What if we could deterministically find the optimal pivot? What
would that be? The median! Oh...

What we need: In O(n) comparisons, we need to find a “good” pivot. A
good pivot would leave us with cn elements in the recursive call, for some

: 3 :
fractionc < 1, e.g,, Tn elements is good.

* Picking the median as the pivot is too much to ask for, so we want
some kind of “approximate median”

Idea (doesn’t quite work, but very close): Pick the median of a smaller subset of the
input (faster to find) then hope that it is a good approximation to the true median.

: What if we find the median of half of the elements? How
good of a pivot is this element?
>N

L\z

If we pivot on the median of half of the elements, the number of
comparisons will be

T < nN-| = T(%) + T(%)

s-_—/

. Show that picking any constant-fraction sized subset (e.g., a quarter, one
tenth) and taking the median doesn’t work.

: This idea is extremely subtle. It took four Turing Award winners to figure it
out. We don’t expect that you would produce this algorithm on your own.

* Finding the median of a smaller set almost worked, but it was just a bit
too much work since the “approximate median” wasn’t good enough.

Huge idea (median of medians): Find the medians of several small subsets of
the input, then find the median of those medians.

1:;‘7:? o - 2 1 N/ goues

S

function DeterministicSelect(a[0 ...n — 1], k) {
group the array into n/5 groups of size 5, find the median of each group
recursively find the median of these medians, call it p

// Below is the same as Randomized Quickselect

let LESS = [a; such that a; < p]

let GREATER = [a; such that a; > p]

if [LESS| > k then return DeterministicSelect(LESS, k)
else if [LESS| = k then return p

else return DeterministicSelect(RIGHT, k — |LESS| — 1)

How good Is the median of medians?

ths

Iheorem: The median of medians is larger than at least 3/10""° of the input,

and smaller than at least 3/10"S of the input

000 B0 6 0

37

: The number of comparisons performed by DeterministicSelect on an
input of size nis O(n)

Find the median of n/5 groups of size 5 O (”)

.,

Recursively find the median of medians 1 (m{g‘) =
0

Split the input into LESS and GREATER 1\ = |

Recurse on the appropriate piece T (%L

rm < O« T(D)+ T(R)

Solving the recurrence

n n

T(n) < cn+T(§) +T(1—O)

Exercise: Solve the recurrence using your preferred technique
(e.g., unrolling, stack of bricks)

39

So, the total running time is...

T(n) < cn(1+ (9/10) + (9/10)2 + (9/10)3 + -+-)

Applying the formula for a geometric series, we get T(n) < 10cn = 0(n)

40

function DeterministicSelect(a[0 ...n — 1], k) {
group the array into n/5 groups of size 5,
find the median of each group

recursively find the median of these medians, call it p

// Below is the same as Randomized Quickselect
let LESS = [a; such that a; < p]

let GREATER = [a; such that a; > p]

if |LESS| = k then return DeterministicSelect(LESS, k)
else if |LESS| = k then return p

else return DeterministicSelect(RIGHT, k — |LESS| — 1)

* The is the
key ingredient for getting a
deterministic algorithm

* To analyze the recurrence, we
used the “stack of bricks”
method.

* We could also prove it by
induction, but this requires us
to know the runtime already

Its fast in practice! J

Worst-case cost is @(n?)]

Average-case cost is O(n log n) J

Randomized Quicksort costs
O(n log n) in expectation

|

Deterministic Quicksort in
worst-case O(n log n) cost!!

Use the median-of-medians
algorithm to find the median in
deterministic ©®(n) cost

Use the median as the pivot for
Quicksort

Take-home messages for today

* There’s more to Quicksort than you think!
* Recursion is powerful, randomization is powerful.

* Analyzing randomized recursive algorithms is tricky. Be careful with
expected values!!

* Analyzing runtime via recurrence relations is very useful.

43

	Slide 1: Algorithm Design and Analysis
	Slide 2: Logistics
	Slide 3: Who is 15-451/15-651?
	Slide 4: Course website
	Slide 5: Homework
	Slide 6: Recitation
	Slide 7: Midterm exams
	Slide 8: Tutors
	Slide 9: Academic Integrity
	Slide 10: AIV Alternatives
	Slide 11: Now onto the class!
	Slide 12: Formal analysis of algorithms
	Slide 13: Today’s model
	Slide 14: Quicksort: A journey of algorithm design and analysis
	Slide 15: Which measure of complexity?
	Slide 16: Which measure of complexity?
	Slide 17: Making it better
	Slide 18: Making it better: Randomized Quicksort
	Slide 19: Analyzing randomized algorithms
	Slide 20: The Quicksort journey so far
	Slide 21: New Problem: Median finding
	Slide 22: New problem: Median / bold italic k to the bold t bold h smallest
	Slide 23: Algorithm design strategy
	Slide 24: Take inspiration from Quicksort?
	Slide 25: The result: Randomized Quickselect
	Slide 26: Now the analysis
	Slide 27: First attempt: Almost-correct analysis
	Slide 28: A better proof
	Slide 29: Validating the recurrence relation
	Slide 30: Summary of randomized Quickselect
	Slide 31: Have we achieved our goal?
	Slide 32: We want a deterministic algorithm!!
	Slide 33: Picking a good pivot
	Slide 34: Median of half
	Slide 35: We need to go deeper!
	Slide 36: Median of medians algorithm
	Slide 37: How good is the median of medians?
	Slide 38: Analysis of DeterministicSelect
	Slide 39: Solving the recurrence
	Slide 40: So, the total running time is…
	Slide 41: Summary of DeterministicSelect
	Slide 42: The Quicksort journey
	Slide 43: Take-home messages for today

