
Algorithm
Design and Analysis

Introduction, Algorithm Analysis, and Selection

1

Logistics

2

Who is 15-451/15-651?

Instructors

3

Daniel David

Tutors

Emily Arturo

Teaching Assistants

Lauren

Will

Emily Efe Honghao Tanisha

Kevin Thomas Harrison Asher

Julia

Course website

https://www.cs.cmu.edu/~15451-s25/

4

• Contains course calendar with office hour schedule

• Contains all lecture notes, homework handouts, policies, etc.

• Links to other important platforms (OHQ, Ed, Gradescope)

https://www.cs.cmu.edu/~15451-s25/

Homework

• 6 Written Homework: Each has 2-3 problems. Solutions must be
typeset, not handwritten! Submitted to Gradescope.

• 3 Oral Homework: Collaborate in groups of three and present your
solutions to a TA

• 4 Programming Problems: Submitted via Gradescope.
• Officially recommended/supported languages are C++ and Python

• We will accept C, Java, OCaml, Rust when possible (not guaranteed for every
assignment, and TA/instructor help will be limited.)

5

Recitation

• Please review the lecture notes and read the problems beforehand

• Only 50-minutes long so please show up on time!

• 5% of your grade from attendance

• Two styles of recitation!

• Review-style (R): More review and goes at a slower pace

• Problem-heavy (P): Faster pace and cover more problems

6

Midterm exams

• Evening midterms!

• Put these in your calendar right now!

Midterm one (Week 5)

Tuesday February 11th

7:00pm – 9:30pm

Midterm two (Week 10)

Tuesday March 25th

7:00pm – 9:30pm

7

Tutors

• One-on-one tutoring is available

• Highly recommended if you struggled with any of the prerequisite
courses (15-210, 15-251, 15-122, concepts)

• Open to anyone, space permitting

8

Academic Integrity

• Healthy collaboration within the rules set out by the assignments is great for
learning, but cheating is not.

9

Definition (Cheating): Includes, but is not limited to:
• Reading/copying answers/code from online sources, books, etc.
• Reading/copying answers of other people, current or former students or otherwise
• Reading/copying answers obtained from generative AI tools (e.g., ChatGPT, CoPilot)
• Accessing problems or solutions from past semesters (e.g., from a friend who took the

course in a previous semester, or from a website, etc.)

Detection: We are extremely accurate at catching cheating.
• In Spring 2024, we caught 50-60 cases of cheating (out of approx. 180 students)
• In Fall 2024, we caught 30-40 cases of cheating (out of approx. 130 students)

AIV Alternatives

10

• 451 is a hard course. We know that a lot of AIVs happen out of desperation, not a
premeditated plan to cheat.

• If you are struggling with the course, please sign up for tutoring, attend
instructor office hours, and reach out for additional help

• If you are behind and low on time, request an extension (see the extension
request form on the course website)

• Try to start your homework early, but if you are stuck at the last minute, we don’t
close after business hours. If you reach out for homework help at the last
minute, we will almost always try to be available to help.

https://docs.google.com/forms/d/e/1FAIpQLSeqP61STzHuXV4TBdFh1z8KQzRgzR2D9TydYu5sSVo0c6agZA/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSeqP61STzHuXV4TBdFh1z8KQzRgzR2D9TydYu5sSVo0c6agZA/viewform?usp=sf_link

Now onto the class!

11

Formal analysis of algorithms

• We want provable guarantees about the properties of algorithms
• E.g., prove that it runs in a certain amount of time

• E.g., prove that it outputs the correct answer

• Important question: How exactly do we measure time?
• Answer: It depends :)

• Lots more discussion about this in the coming lectures

• We need a model of computation!

• Specifies exactly what operations are permitted

• How much each operation costs (sometimes called the cost model)

12

Today’s model

The Comparison Model
• Input to the algorithm consists of an array of 𝑛 items in some order
• The algorithm may perform comparisons (is 𝑎𝑖 < 𝑎𝑗?) at a cost of 𝟏

• Copying/moving items is free
• The items are of an arbitrary type. We are not allowed to assume a type
▪ E.g., the items can not be assumed to be numbers
▪ This means we can not add, multiply, XOR the items
▪ We also can not use hashing, or use elements as array indices, etc.

Quicksort: A journey of algorithm design and analysis

• As seen in 15-122 and 15-210 (and possibly elsewhere!)

• One of the most well-known algorithms in all of computer science

14

function quicksort(𝒂[𝟎 … 𝒏 − 𝟏] : list) {
 select a pivot element p = 𝑎0

 let LESS = [𝑎𝑗 such that 𝑎𝑗 < 𝑝]

 let GREATER = [𝑎𝑗 such that 𝑎𝑗 > 𝑝]

 return quicksort(LESS) + [𝑝] + quicksort(GREATER)
}

Question: What is the complexity of Quicksort?

Which measure of complexity?

15

Note: By default, if not specified, we will pretty much always consider worst-case complexity.

Definition (Worst-case complexity): The worst-case complexity of an algorithm is the
largest cost it can incur over any possible input (usually as a function of input size 𝑛)

Theorem (15-122): The worst-case cost of QuickSort on an input of length 𝑛 is Θ 𝑛2

Which measure of complexity?

16

Note: Mathematically, this is equivalent to the expected value of the cost of the
algorithm over an input chosen uniformly randomly.

Definition (Average-case complexity): The average-case complexity of an algorithm is
the average of the costs of the algorithm over every possible input.

Theorem (15-210): The average cost of QuickSort on an input of length 𝑛 is Θ 𝑛 log 𝑛

Note: We will rarely, if ever, consider average-case complexity in 15-451/651.

Making it better

• The average-case performance of QuickSort is great

• But its only reliable if the input is random! An evil adversary can
always feed our code a worst-case input and ruin our day :(

• Most real-life data is not random. Hoping that data is random is not a
good way to design your algorithms.

17

Important idea: Instead of hoping that the input is random…
put the randomness into the algorithm!

Making it better: Randomized Quicksort

18

function random_quicksort(𝒂[𝟎 … 𝒏 − 𝟏] : list) {
 select a random pivot element p = 𝑎𝑖

 let LESS = [𝑎𝑗 such that 𝑎𝑗 < 𝑝]

 let GREATER = [𝑎𝑗 such that 𝑎𝑗 > 𝑝]

 return random_quicksort(LESS) + [𝑝] + random_quicksort(GREATER)
}

Analyzing randomized algorithms

19

IMPORTANT NOTES:

• we are not assuming that our random-number generator gives us the worst
possible random numbers,

• we are not analyzing the algorithm for a randomly chosen input (that’s average-
case complexity!)

Theorem (15-210): The expected number of comparisons performed by
randomized Quicksort on any input of size 𝑛 is Θ 𝑛 log 𝑛

Note: When analyzing randomized algorithms, we are usually interested in the
expected value over the random choices to process a worst-case user input

The Quicksort journey so far

20

Its fast in practice!

Worst-case cost is Θ 𝑛2

Average-case cost is Θ 𝑛 log 𝑛

Randomized Quicksort costs
Θ 𝑛 log 𝑛 in expectation

What if we could efficiently
find the median element and
use that as the pivot?

Deterministic Quicksort in
worst-case Θ 𝑛 log 𝑛 cost??

New Problem: Median finding

21

New problem: Median / 𝒌𝐭𝐡 smallest

• More generally, we can try to solve the “𝑘th smallest” problem. Given a
range of distinct elements and an integer 𝑘, we want to find the element
such that there are exactly 𝑘 smaller elements

• 𝑘 is zero-indexed, so the minimum element is the 0th smallest element

22

Problem (Median) Given a range of distinct elements 𝑎1, 𝑎2 , … , 𝑎𝑛, output the median.

Definition (Median): The median is the
𝑛−1

2
th smallest element

Algorithm design strategy

• Redundancy: We are finding the 𝑘𝑡ℎ smallest for every 𝑘

23

Algorithm design idea: Start with a simple but inefficient algorithm, then optimize and remove
unnecessary steps.

Simple algorithm (𝒌𝒕𝒉 smallest): Sort the array and output element 𝑘

Take inspiration from Quicksort?

Question: If we only want the 𝑘th number, what is wasteful here?

function quicksort(𝒂[𝟎 … 𝒏 − 𝟏]) {
 select a pivot element p = 𝑎𝑖

 let LESS = [𝑎𝑗 such that 𝑎𝑗 < 𝑝]

 let GREATER = [𝑎𝑗 such that 𝑎𝑗 > 𝑝]

 return quicksort(LESS) + [𝑝] + quicksort(GREATER)
}

return quicksort(LESS) + [𝑝] + quicksort(GREATER)

The answer is either in here Or the answer is in here

24

The result: Randomized Quickselect

function quickselect(𝑎 0 … 𝑛 − 1 , 𝑘) {
 select a random pivot element p = 𝑎𝑖 for a random 𝑖
 let LESS = [𝑎𝑗 such that 𝑎𝑗 < 𝑝]

 let GREATER = [𝑎𝑗 such that 𝑎𝑗 > 𝑝]

 if ____________ then return ______________________

 else if _____________ then return _________________

 else return _______________________
}

25

Now the analysis

26

Let 𝑇 𝑛 = the expected number of comparisons performed by
Quickselect on a worst-case input of size 𝑛

Theorem: The expected number of comparisons performed by Quickselect on
an input of size 𝑛 is at most 8𝑛

Warning: The proof is subtle because it uses probability. We must be careful to
not make false assumptions about how probability and randomness work…

First attempt: Almost-correct analysis

Question: What is a (good) upper bound on the expected size of the
recursive subproblem?

So, we might try the recurrence…

 𝑇 𝑛 ≤

27

Note: This proof is nearly, but not quite correct. It does, however, provide some
useful insight that gets us closer to a correct proof.

A better proof

Question: Let’s be more precise. How often is the recursive
subproblem size at most 3𝑛/4 ?

So, a better recurrence relation is

 𝑇 𝑛 ≤

28

Validating the recurrence relation

𝑇 𝑛 ≤ 2 𝑛 − 1 + 𝑇
3𝑛

4

29

Exercise: Solve the recurrence or verify through substitution
that the solution satisfies 𝑻 𝒏 ≤ 𝟖𝒏

Summary of randomized Quickselect

• Runs in 𝑂(𝑛) expected time
in the comparison model.

• More tightly, uses at most 8𝑛
comparisons in expectation.

• An as exercise, the analysis
can be improved to 4𝑛
comparisons.

function quickselect(𝑎 0 … 𝑛 − 1 , 𝑘) {
 select a random pivot element p = 𝑎𝑖 for a random 𝑖
 let LESS = [𝑎𝑗 such that 𝑎𝑗 < 𝑝]

 let GREATER = [𝑎𝑗 such that 𝑎𝑗 > 𝑝]

 if LESS ≥ 𝑘 then return quickselect(LESS, 𝑘)
 else if LESS = 𝑘 then return 𝑝
 else return quickselect(RIGHT, 𝑘 − LESS − 1)
}

30

Have we achieved our goal?

• Use Quickselect to select the pivot for Quicksort

• Guaranteed best-case recursion for Quicksort

• Problem?

31

• Randomized Quickselect is still… randomized.

• So, Quicksort would still be 𝑂(𝑛 log 𝑛) randomized, not deterministic

We want a deterministic algorithm!!

• Where was the randomness in Randomized QuickSelect? How can
we get rid of it?

• What if we could deterministically find the optimal pivot? What
would that be? The median! Oh…

32

What we need: In 𝑂 𝑛 comparisons, we need to find a “good” pivot. A
good pivot would leave us with 𝑐𝑛 elements in the recursive call, for some

fraction 𝑐 < 1, e.g.,
3𝑛

4
 elements is good.

Picking a good pivot

• Picking the median as the pivot is too much to ask for, so we want
some kind of “approximate median”

Question: What if we find the median of half of the elements? How
good of a pivot is this element?

33

Idea (doesn’t quite work, but very close): Pick the median of a smaller subset of the
input (faster to find) then hope that it is a good approximation to the true median.

Median of half

If we pivot on the median of half of the elements, the number of
comparisons will be

 𝑇 𝑛 ≤

Exercise: Show that picking any constant-fraction sized subset (e.g., a quarter, one
tenth) and taking the median doesn’t work.

34

We need to go deeper!

• Finding the median of a smaller set almost worked, but it was just a bit
too much work since the “approximate median” wasn’t good enough.

35

Note: This idea is extremely subtle. It took four Turing Award winners to figure it
out. We don’t expect that you would produce this algorithm on your own.

Huge idea (median of medians): Find the medians of several small subsets of
the input, then find the median of those medians.

Median of medians algorithm

function DeterministicSelect(𝑎 0 … 𝑛 − 1 , 𝑘) {
 group the array into 𝑛/5 groups of size 5, find the median of each group
 recursively find the median of these medians, call it 𝑝

 // Below is the same as Randomized Quickselect
 let LESS = [𝑎𝑗 such that 𝑎𝑗 < 𝑝]

 let GREATER = [𝑎𝑗 such that 𝑎𝑗 > 𝑝]

 if LESS ≥ 𝑘 then return DeterministicSelect(LESS, 𝑘)
 else if LESS = 𝑘 then return 𝑝
 else return DeterministicSelect(RIGHT, 𝑘 − LESS − 1)
}

36

How good is the median of medians?

37

Theorem: The median of medians is larger than at least 3/10ths of the input,
and smaller than at least 3/10ths of the input

Analysis of DeterministicSelect

1. Find the median of 𝑛/5 groups of size 5

2. Recursively find the median of medians

3. Split the input into LESS and GREATER

4. Recurse on the appropriate piece

𝑇 𝑛 ≤

38

Theorem: The number of comparisons performed by DeterministicSelect on an
input of size 𝑛 is 𝑂 𝑛

Solving the recurrence

𝑇 𝑛 ≤ 𝑐𝑛 + 𝑇
𝑛

5
+ 𝑇

7𝑛

10

39

Exercise: Solve the recurrence using your preferred technique
(e.g., unrolling, stack of bricks)

So, the total running time is…

𝑇 𝑛 ≤ 𝑐𝑛(1 + 9/10 + 9/10 2 + 9/10 3 + ⋯)

40

Applying the formula for a geometric series, we get 𝑻 𝒏 ≤ 𝟏𝟎𝒄𝒏 = 𝑶(𝒏)

Summary of DeterministicSelect

• The median of medians is the
key ingredient for getting a
deterministic algorithm

• To analyze the recurrence, we
used the “stack of bricks”
method.

• We could also prove it by
induction, but this requires us
to know the runtime already

function DeterministicSelect(𝑎 0 … 𝑛 − 1 , 𝑘) {
 group the array into 𝑛/5 groups of size 5,
 find the median of each group
 recursively find the median of these medians, call it 𝑝

 // Below is the same as Randomized Quickselect
 let LESS = [𝑎𝑗 such that 𝑎𝑗 < 𝑝]

 let GREATER = [𝑎𝑗 such that 𝑎𝑗 > 𝑝]

 if LESS ≥ 𝑘 then return DeterministicSelect(LESS, 𝑘)
 else if LESS = 𝑘 then return 𝑝
 else return DeterministicSelect(RIGHT, 𝑘 − LESS − 1)
}

41

42

The Quicksort journey

42

1. Use the median-of-medians
algorithm to find the median in
deterministic Θ(𝑛) cost

2. Use the median as the pivot for
Quicksort

Its fast in practice!

Worst-case cost is Θ 𝑛2

Average-case cost is Θ 𝑛 log 𝑛

Randomized Quicksort costs
Θ 𝑛 log 𝑛 in expectation

Deterministic Quicksort in
worst-case 𝛩 𝑛 log 𝑛 cost!!

Take-home messages for today

• There’s more to Quicksort than you think!

• Recursion is powerful, randomization is powerful.

• Analyzing randomized recursive algorithms is tricky. Be careful with
expected values!!

• Analyzing runtime via recurrence relations is very useful.

43

	Slide 1: Algorithm Design and Analysis
	Slide 2: Logistics
	Slide 3: Who is 15-451/15-651?
	Slide 4: Course website
	Slide 5: Homework
	Slide 6: Recitation
	Slide 7: Midterm exams
	Slide 8: Tutors
	Slide 9: Academic Integrity
	Slide 10: AIV Alternatives
	Slide 11: Now onto the class!
	Slide 12: Formal analysis of algorithms
	Slide 13: Today’s model
	Slide 14: Quicksort: A journey of algorithm design and analysis
	Slide 15: Which measure of complexity?
	Slide 16: Which measure of complexity?
	Slide 17: Making it better
	Slide 18: Making it better: Randomized Quicksort
	Slide 19: Analyzing randomized algorithms
	Slide 20: The Quicksort journey so far
	Slide 21: New Problem: Median finding
	Slide 22: New problem: Median / bold italic k to the bold t bold h smallest
	Slide 23: Algorithm design strategy
	Slide 24: Take inspiration from Quicksort?
	Slide 25: The result: Randomized Quickselect
	Slide 26: Now the analysis
	Slide 27: First attempt: Almost-correct analysis
	Slide 28: A better proof
	Slide 29: Validating the recurrence relation
	Slide 30: Summary of randomized Quickselect
	Slide 31: Have we achieved our goal?
	Slide 32: We want a deterministic algorithm!!
	Slide 33: Picking a good pivot
	Slide 34: Median of half
	Slide 35: We need to go deeper!
	Slide 36: Median of medians algorithm
	Slide 37: How good is the median of medians?
	Slide 38: Analysis of DeterministicSelect
	Slide 39: Solving the recurrence
	Slide 40: So, the total running time is…
	Slide 41: Summary of DeterministicSelect
	Slide 42: The Quicksort journey
	Slide 43: Take-home messages for today

