15-451/651 Algorithm Design & Analysis, Spring 2025 Recitation #2

Objectives

- Understand and review integer sorting algorithms, counting sort and radix sort
- Understand universal hash functions and their properties
- ullet Review k-wise independent hashing and practice proving that a family is k-wise independent

Recitation Problems

1. (Why is it called counting sort?)

- (a) Suppose we are given an array of elements a[0], ..., a[n-1] with integer keys in 0, ..., u-1 to sort, and we have an array of *counts* c[x] for each key x, i.e., a counter of how many times each element occurs in the input. An element a[i] with key x at position i is in the correct sorted order if and only if what condition is true?
- (b) Using this idea, implement an algorithm that outputs the given array in **stable** sorted order by their integer keys O(n + u) time and O(n + u) space.

2. (*k*-wise Independent Hashing) Recall from class that a hash family \mathcal{H} is *k*-wise independent if for all *k* distinct keys $x_1, x_2, \ldots, x_k \in \mathcal{U}$ and every set of *k* values $v_1, v_2, \ldots, v_k \in \{0, 1, \ldots, m-1\}$, we have that

$$\Pr_{h\in\mathcal{H}}[h(x_1)=v_1\wedge h(x_2)=v_2\wedge\cdots\wedge h(x_k)=v_k]=\frac{1}{m^k}$$

Intuitively, this means that if you look at only up to k keys, the hash family appears to hash them truly randomly.

(a) Is this hash family from $U = \{a, b\}$ to $\{0, 1\}$ (i.e., m = 2) universal? uniform (i.e., "onewise independent")? how about pairwise (2-wise) independent?

$$egin{array}{c|ccc} & a & b \\ \hline h_1 & 0 & 0 \\ h_2 & 1 & 0 \\ \hline \end{array}$$

(b) Can you fill in the blanks in this hash family with values in {0,1} to make it pairwise independent? 3-wise independent?

3. **(Extended Matrix Method)** In lecture we covered the *random binary matrix method* of hashing integers by interpreting them as binary vectors from the universe $\mathcal{U} = \{0,1\}^w$, into a table of size $m = 2^b$ indexed by $\{0,1\}^b$ where each hash function in the family is defined by a random matrix $A \in \{0,1\}^{b \times w}$ and

$$h(x) = Ax \mod 2$$

- (a) Prove that the matrix method is not 1-wise independent (i.e., not uniform).
- (b) Now suppose we extend the matrix method to be defined as

$$h(x) = Ax + c \mod 2$$

where $c \in \{0,1\}^b$ is a random binary vector.

Prove that this extension of the matrix method is pairwise independent.