15-451: Algorithm Design and Analysis, Carnegie Mellon University

Approximation Algorithms

While we have good algorithms for many optimization problems, the unfortunate reality eluci-
dated by theoretical computer science is that so very many important real-world optimization
problems are NP-hard. What do we do? Suppose we are given an NP-hard problem to solve.
Assuming P # NP, we can’t hope for a polynomial-time algorithm for these problems. But can
we get polynomial-time algorithms that always produce a “pretty good” solution? (a.k.a. ap-
proximation algorithms)

Objectives of this lecture

In this lecture, we will

define and motivate approximation algorithms

derive two greedy algorithms for scheduling jobs on multiple machines to minimize
their makespan (a.k.a. stacking blocks to minimize the height of the tallest stack)

see how rounding linear programs can give us an approximate vertex cover

show how scaling can be used to turn pseudopolynomial-time algorithms into effi-
cient approximation algorithms.

1 Introduction

Given an NP-hard problem, we don't hope for a fast algorithm that always gets the optimal
solution — if we had such a polynomial algorithm, we would be able to use it to solve everything
in NP and that would imply that P = NP, something we expect is false. But when faced with an
NP-hard problem, giving up is not the only reasonable solution! There are several ways that we
might try to move forward

- First approach: find a polynomial-time algorithm that guarantees to get at least a “pretty
good” solution? E.g., can we guarantee to find a solution that’s within 10% of optimal? If not
that, then how about within a factor of 2 of optimal? Or, anything non-trivial?

- Second approach: Find heuristics that speed up the algorithm for some cases, but still expo-
nential time in the worst case.

Today’s lecture focuses on the first idea, to derive polynomial-time approximation algorithms.

1.1 Formal definition

Definition: Approximation Algorithm

Given some optimization problem with optimal solution value OPT, and an algorithm
which produces a feasible solution with value ALG, we say that the algorithm is a c-
approximation algorithm if ALG is always within a factor of ¢ of OPT. The convention
differs depending on whether the optimization problem is a minimization or maximiza-
tion problem.

Minimization Analgorithmisa c-approximation (¢ > 1) iffor all inputs, ALG < c¢-OPT.

Maximization An algorithm is a c-approximation (0 < ¢ < 1) if for all inputs, ALG >
¢ -OPT.

2 Scheduling Jobs on Multiple Machines to Minimize Load

Problem: Scheduling jobs on multiple machines to minimize the makespan

You have m identical machines on which you want to schedule some 7 jobs. Each job
i €{1,2,...,n} has a processing time p; > 0. You want to partition the jobs among the
machines to minimize the load of the most-loaded machine. In other words, if S; is the
set of jobs assigned to machine j, define the makespan of the solution to be

; : : J
<7<
1<j<m (iesi)

You want to minimize the makespan of the solution you output.
. V.

This is the formal definition of the problem that is usually used in textbooks, but here’s a nicer
and (subjectively) more intuitive way to describe the problem.

Problem: Stacking blocks to minimize the height

You have n blocks, the i of which has height p;. You want to arrange the blocks into m
stacks such that the height of the tallest stack is as short as possible.

Observe that these two problems are exactly the same, just with a different story, but the latter
(I think) is easier to visualize and think about.

Example Here’s an example input to the job scheduling / block stacking problem. Say we
have p ={1,3,2,4,5,2,5} and m = 3. The blocks are shown on the left, and two possible ways
to stack them are shown on the right. The makespan is the height of the tallest stack, which is
9 for the first example, and 8 for the second example.

4
2 2|2
1
4
2
45 5 5 5 5 5
3 3 3
2 2

Makespan=9 Makespan =8
The second example turns out to be optimal. Can you think of a proof of why?

Problem 1. Give a concise argument that a makespan of 8 is optimal for the block stacking
example above.

2.1 Algorithms for job scheduling / block stacking

Our first approach to the solve the block stacking problem is a greedy algorithm. Recall that
greedy algorithms are those that just look for some locally best choice and make that at each
step, rather than planning ahead in any way. Greedy algorithms are often very good for pro-
ducing approximations.

Algorithm: Greedy job scheduling / block stacking

Start with m empty stacks, then, for each block, place it on the current shortest stack.

Applying this to the example above, we would get the following configuration, which has a
makespan of 10, which is only 25% more than the optimal, so not too bad.

ALG=10

But that was just one example, how bad can it get in general? We need to prove that this algo-
rithm always gives us something that is pretty good, or near optimal.

Theorem 1: Quality of greedy job scheduling

The greedy approach outputs a solution with makespan at most 2 times the optimum,
i.e., itis a 2-approximation algorithm.

Proof. Let’s start by looking at the height of the tallest stack in our solu-
tion, since this is what defines the makespan (the answer). Call the last
block added to the tallest stack i*, so its heightis p;.. Now call the remain- bi
ing height of the tallest stack L. So we have by definition ALG = L + p;..

The hardest part of these greedy algorithm proofs is relating the value of ..

ALG to the value of OPT. L

First, note that since every block must be placed somewhere, OPT > p;
for all i and specifically, OPT > p;.. What can we say about L? Remem- _

i ALG=p;+L
ber that the algorithm always chooses the shortest stack to place the next
block, so when it decided to place i* on the stack, it was because L was
the height of the shortest stack at the time. This means that every stack has height at least L,
which means that OPT > L.

So, combining these two inequalities, we get

ALG=L+p;: <OPT+OPT=20PT

2.2 Aworst-case example

Is this analysis tight? Sadly, yes. Suppose we have m(m —1) jobs of size 1, and 1 job of size m,
and we schedule the small jobs before the large jobs. The greedy algorithm will spread the small
jobs equally over all the machines, and then the large job will stick out, giving a makespan of
2m—1, whereas the right thing to do is to spread the small jobs over m —1 machines and get a
makespan of m.

m
(m—1)xm mmx(m—1)
ALG=2m—1 OPT=m

The approximation ratio in this case is % =2(1— %) ~ 2, so this looks almost tight. It can be

made tight with a bit more analysis, but 2 is the tightest constant approximation ratio.

Problem 2. Improve the analysis slightly to show that the approximation ratio of the greedy
algorithm is actually 2(1 —), which makes the above example tight.

Can we get a better algorithm? The worst-case example helps us see the problem: when small
jobs come before big jobs they can cause big problems! So lets prevent this...

2.3 Animproved greedy algorithm

Algorithm: Sorted greedy job scheduling / block stacking

Sort the blocks from biggest to smallest, then do the greedy algorithm.

This algorithm prevents the worst-case example that we showed before, but what does it do in
general? Let’s prove that it is in fact an improvement.

Theorem 2: Quality of sorted greedy job scheduling

The sorted greedy approach outputs a solution with makespan at most 1.5 times the
optimum, i.e., it is a 1.5-approximation algorithm.

Proof. Let’s use the same setup as before and say that i* is the last block added to the tallest
stack, and L is the height of the rest of the stack underneath i*, so the makespan (tallest stack)
is L + p;«. We still have the facts that OPT > L and OPT > p;.. We need to make some new
observation in order to get the approximation ratio lower.

First, suppose L > 0, which means there are some blocks underneath i*. Since the blocks were
processed in sorted order (important), all of the blocks underneath are at least as large. Fur-
thermore, since L was the height of the shortest stack at the time that i* was added, every other
stack is also non-empty and contains blocks that are at least as large as i*. From this, we can
deduce that there exists at least m + 1 blocks of size at least p;. because there was at least one
in each of the m stacks before we processed i*. So, by the pigeonhole principle, since there are
only m stacks, for any possible configuration, there must always be a stack that contains two
blocks of size at least p;.. Therefore OPT > 2p;., or equivalently p;. < %OPT.

Combining this with our original inequality, we get

ALG = L+ p;. <OPT + 3OPT = 1.50PT.

Now we have an edge case to deal with. What if L = 0? Then we can’t say that there are any
blocks underneath i* or make any argument about the number of large blocks. In this case, we
just have ALG = p;., but we know that OPT > p;., so actually ALG = OPT, so we get the exact
answer in this case. O

So again we ask if this analysis is tight. In fact, this time it isn't. We can further reason about
the properties of the sorted algorithm to get a better approximation ratio.

Problem 3. It is possible to show that the makespan of Sorted Greedy is at most %OPT, and
that this approximation ratio is indeed tight. Try it.

3 Vertex Cover via LP Rounding

Recall that a vertex coverin a graph is a set of vertices such that every edge is incident to (covers)
at least one of them. The minimum vertex cover problem is to find the smallest such set of
vertices.

Definition: Minimum Vertex Cover

Given a graph G, find a smallest set of vertices such that every edge is incident to at least
one of them.

For instance, this problem is like asking: what is the fewest number of guards we need to place
in a museum in order to cover all the corridors.

Problem 4. Find avertex cover in the graphs above of size 3. Argue that there is no vertex cover
of size 2.

3.1 Alinear-programming-based algorithm

We don'’t expect to find the optimal solution in polynomial-time, but we will show in this section
that we can use linear programming to obtain a 2-approximate solution. That is, if the graph
G has a vertex cover of size k*, we can return a vertex cover of size at most 2k*. Let’s remind
ourselves of the LP relaxation of the vertex cover problem:

minimize E wy

vev
st. w,+w,>1 Y{u,v}eE
w, >0 YveV

Remember that in the integral version of the problem, the variables denote that a vertex v is
in the cover if x, = 1 and not in the cover if x,, = 0. Solving the integral version is NP-hard, so
we settle for a relaxation, where we allow fractional values of x,, so a vertex can be “half” in
the cover. This is called an “LP relaxation” because any true vertex cover is a feasible solution,
but we’'ve made the problem easier by allowing fractional solutions too. So, the value of the
optimal solution now will be at least as good as the smallest vertex cover, maybe even better
(i.e., smaller), but it just might not be legal any more.

Since, in an actual vertex cover we can not take half of a vertex, our goal is to convert this frac-
tional solution into an actual vertex cover. Here’s a natural idea.

Algorithm: Relax-and-round for vertex cover

Solve the LP relaxation for x, for each v € V, then pick each vertex for which x, > %

This is called rounding the linear program (which literally is what we are doing here by round-
ing the fraction to the nearest integer — for other problems, the “rounding” step might not be
so simple).

Theorem: Relax-and-round is a 2-approximation

The above algorithm is a 2-approximation to VERTEX-COVER.

Proof. We need to prove two things. First, that we actually obtain a valid vertex cover (every
edge must be incident to a vertex that we pick) and that the size of the resulting cover is not too
large.

Feasibility Suppose for the sake of contradiction that there exists an edge (u, v) that is not
covered. Then that means we did not pick either u or v, which means that x, < 4 and x, < 1.
Therefore, x,, + x, < 1, but this contradicts the LP constraint that x, + x, > 1. So the algorithm
always outputs a vertex cover.

Approximation ratio Let LP denote the objective value of the relaxation. Since it is a re-
laxation, its solution can not be worse than the optimal integral solution (the actual mini-
mum vertex cover), so LP < OPT. Furthermore, when we round the solution, in the worst
case, we increase variables from 1 to 1, so we double their value. Since the objective is Y x,,
this at most doubles the objective value, so ALG < 2LP. Combining these inequalities, we get
ALG <2LP <20PT. O

Again, we ask if this is analysis is tight. It in fact is, and a simple example to show that is the
graph with two vertices u and v connected by an edge. If the LP relaxation assigns x,, = x,, = %,
we will pick both vertices for the cover, giving ALG =2 when OPT =1.

3.2 Hardness of Approximation

Interesting fact: nobody knows any approximation algorithm for vertex cover with approxima-
tion ratio 1.99. Best known is 2— O(1/4/logn), which is 2—o(1).

There are results showing that a good-enough approximation algorithm will end up show-
ing that P=NP. Clearly, a 1-approximation would find the exact vertex cover, and show this.
Hrastad showed that if you get a 7/6-approximation, you would prove P=NP. This 7/6 was im-
proved to 1.361 by Dinur and Safra. Beating 2 — € has been related to some other problems (it
is “unique games hard”), but is not known to be NP-hard.

4 Scaling algorithms

Recall the famous Knapsack problem from the Dynamic Programming lecture.

Definition: The Knapsack Problem

We are given a set of n items, where each item i is specified by a size s; and a value v;.
We are also given a size bound S (the size of our knapsack). The goal is to find the subset
of items of maximum total value such that sum of their sizes is at most S (they all fit into
the knapsack).

In that lecture, we gave a dynamic programming algorithm whose running time was O(nS),
which is not polynomial time but rather pseudopolynomial time since it depends linearly on
S, which could be a very large number (exponential in the number of bits required to specify the
problem). We can derive an alternate dynamic programming algorithm that does not depend
on S but will instead depend on the magnitude of the values (this may seem equally useless but
the reason will become clear momentarily).

Another pseudopolynomial-time solution Let us define the following subproblems:
G(k, P)=Minimum weight of a subset of tiems {1, ..., k} with value > P

Thisiskind oflike the “dual” of the original dynamic program where we were trying to maximize
the value with a fixed amount of weight, now we minimize the weight needed to obtain a fixed
amount of value. We can solve this with the following recurrence:

0 ifk=0and P <0,
G(k,P)=+ o0 ifk=0and P >0,
min(G(k—1,P),G(k—1,P—v;)+s;) otherwise

This new solution has runtime proportional to the largest possible value of any subset of items.
If we let V denote the value of the most valuable item, then the total value of any subset is at
most nV, so the runtime of this algorithm is O(n?V).

Now, what is so interesting compared to our previous algorithm. The different is that our run-
time is now proportional to the values rather than the weights, but either of those quantities
could be large (exponential-size) numbers, so how does this help? The difference is that today
we are okay with approximate solutions, so we are allowed to edit the values if it makes the
problem faster to solve! Provided that we don’t change the optimal objective too much, we can
try to reduce the values which will consequently reduce the runtime of the algorithm!

4.1 The scaling algorithm
The scaling algorithm for Knapsack works as follows. We set

_ 14
" 10m’

8

and then we scale down the value of every item in the input by a factor of k, i.e., we set

2

Now we simply solve the scaled down instance and return the optimal set of items for the scaled
down instance! The claims are that this algorithm is now polynomial time and that is returns a
pretty close solution to the true optimal solution to the original (unscaled) problem.

Theorem: Runtime

The scaling algorithm runs in O(n3) time.

Proof. By scaling every value by k, the largest value in the input is now 107, and therefore the
total value of every item is at most 10n2. The dynamic program above therefore runs in O(n?)
time. O

Theorem: Approximation ratio

The scaling algorithm is a 0.9 approximation.

Proof. The key to the proof is understanding how much value we “lose” when scaling. Notice
that when we “unscale” an optimal solution to the scaled problem, for each item, we lose at

most "
Ui—U;'k=Ui—lfJ'kSk

value. Therefore the entire solution loses at most nk = 1—‘6 value. However, notice that OPT > V
since we can always take that single item, so therefore we have

v OPT
ALG> OPT— 10 > OPT— BT 0.90PT.

Therefore the solution has value at least 0.9 OPT, so the algorithm is a 0.9 approximation. [

Remark: Polynomial-time approximation schemes

The constant factor of 10 in the algorithm above was arbitrary, but it got us a 0.9 approx-
imation. It turns out that this algorithm works for any £ you want! You scale by

k= £K,
n
and you get a (1 — ¢) approximation! This is called a polynomial-time approximation
scheme. Actually in this case its a fully polynomial-time approximation scheme, be-
cause the runtime scales polynomially in ¢ as well (you can have polynomial-time ap-
proximation schemes where the dependence on ¢ is exponential.)

	Introduction
	Formal definition

	Scheduling Jobs on Multiple Machines to Minimize Load
	Algorithms for job scheduling / block stacking
	A worst-case example
	An improved greedy algorithm

	Vertex Cover via LP Rounding
	A linear-programming-based algorithm
	Hardness of Approximation

	Scaling algorithms
	The scaling algorithm

