
15-451: Algorithm Design and Analysis, Carnegie Mellon University

Online Learning - The Experts
Framework

Today we’ll study the problem of making predictions based on expert advice. We will design
and analyze a set of algorithms that learn which experts are the most accurate/trustworthy,
which therefore allows our algorithm to make good predictions on average. We will see that,
perhaps surprisingly, it is possible to design an algorithm that makes predictions almost as
good as the best expert in hindsight. This framework turns out to have very useful applications
in algorithm design and game theory.

Objectives of this lecture

In this lecture, we will

- Define the experts framework and understand the goal of the algorithms

- See several deterministic strategies for making predictions, and analyze their accuracy

- See an even better strategy that uses randomization

1 Prediction with Expert Advice
There are n “experts” (who are just people with opinions, the quotes suggesting that they may or
may not have any expertise in the matter). Each day the following sequence of events happens:

- We see the n experts’ predictions of the outcome.

- We make our own prediction about the outcome.

- The actual outcome is revealed.

- We are correct if we made the right prediction, and make a mistake otherwise.

This process goes on indefinitely. Our goal: at any time (say after some T days), we want to
have made not too many more mistakes than the best expert. We want to bound the number of
mistakes, and hence this is called the “mistake-bound” model. To start off, say we have binary
predictions (e.g., “Up/Down” predictions if the stock market will go up or down, or “Good/bad”
if the weather will be good or not.)

1

2 Warmup: Simple Strategies
Majority and halving Suppose we know the best expert makes no mistakes. Can we hope to
make only a few mistakes? Here’s a strategy that makes only ⌊log2 n ⌋mistakes. Just predict what
the majority of the remaining experts predicts. (In case of a tie, choose arbitrarily.) Take all
the experts that are wrong and discard them. So each time we make a mistake, we reduce by
the number of experts by at least 1/2. This means after log2 n mistakes we will be left with the
perfect expert.

Without a perfect expert Suppose the best expert makes at most M mistakes on some se-
quence. Can we hope to make only a few mistakes? Here’s a strategy that makes at most
(M + 1)(log2 n + 1)mistakes, assuming n is a power of 2. Run the above majority-and-halving
strategy, but when you have discarded all the experts, bring them all back (call this the begin-
ning of a new “phase”), and continue. Note that in each phase each expert makes at least one
mistake, and you made log2 n + 1 mistakes. Hence, if the best expert makes only M mistakes,
there would be at most M finished phases (plus the last unfinished one), and hence at most
(M +1)(log2 n +1)mistakes in all.

3 The Multiplicative Weights Algorithm
Throwing away an expert when it makes a mistake seems too drastic. Suppose we instead as-
sign weights w j to the experts, sum the weights of the expert saying Up, sum the weights of
the of the expert saying Down, and predict the outcome with greater weight. (This is called the
weighted majority rule, since we are following the advice of the experts that form the weighted
majority.)

Then once we see the outcome, we can reduce the weight of the experts who were wrong. In
the above algorithm, we were zeroing out the weight, but suppose we are gentler?

The (basic) deterministic weighted majority algorithm does the following:

Algorithm: Deterministic weighted majority

Start with each expert having weight 1. Each time an expert makes a mistake, half its
weight. Output the prediction of the experts who form the weighted majority.

Remarkably, we can get a much stronger result now.

Theorem 1

If on some sequence of days, the best expert makes M mistakes. The basic deterministic
weighted majority algorithm makes ≤ 2.41(M + log2 n)mistakes.

Proof. Let Φ :=
∑n

i=1 wi be the sum of weights of the n experts. Note that initially Φ= n . More-

2

over, we claim that each time we make a mistake

Φnew ≤
3

4
Φold.

Indeed, at least half the weight (which was making the majority prediction) gets halved (be-
cause it made a mistake), so we lose at least a quarter of the weight with each mistake. (Also if
we don’t make a mistake, Φ does not increase.) So if we’ve made m mistakes at some point, the
total weight is at most

Φfinal ≤ (3/4)m ·Φinit = (3/4)
m ·n .

Moreover, if the best expert i ∗ has made M mistakes, then Φfinal ≥wi ∗ = (1/2)M . So

(1/2)M ≤ (3/4)m ·n ⇒ (4/3)m ≤ n2M .

Taking logs (base 2) and noting that 1
log2(4/3)

= 2.41 . . . completes the proof.

This is pretty cool! If the best expert makes mistakes 10% of the time we are wrong about 24%
of the time (plus O (log n), but since this depends only on the number of experts, it will be a
negligible fraction as M ≫ log n). We can improve the 2.41 factor down to as close to 2 as we
want, which you can try to prove as an exercise.

Remark: Lower bound for deterministic experts

You can show that no deterministic prediction algorithm can make fewer than 2M mis-
takes. How? Two experts: one says “Up” all the time, the other “Down” all the time. Fix
any prediction algorithm. Since this algorithm is deterministic, you (as the adversary)
know what prediction it will make on any day, if you know what happened on all previ-
ous days. So as the adversary, you can now make the “real” outcome on this day be the
opposite of the algorithm’s prediction for this day. This means the algorithm makes a
mistake on all days. But one of the experts must be right on at least 50% of the days.

4 Randomized Weighted Majority
Given the lower bound above for deterministic algorithms, randomization seems like a natural
source of help. (At least the example above would fail.) Let’s define the Randomized Weighted
Majority algorithm:

Algorithm: Randomized weighted majority

Start with unit weights. At each time, predict 1 with probability
∑

j says 1

w j

∑

j

w j

,

and 0 otherwise. Whenever an expert makes a mistake, multiply its weight by (1−ε).

3

Note that the weights are pretty much like in the basic MW algorithm, just reduced more gently.
(Moreover, note that the prediction we make does not alter the weight reduction step.) A slightly
different, but equivalent view is the following:

Remark: Equivalent probabilistic view of randomized weighted majority

Start with unit weights. At each time, pick a random expert, where expert i is picked with
probability wi

∑

j w j
, and predict that picked expert’s prediction. And each time an expert

makes a mistake, multiply its weight by (1−ε).

The analysis similar to Theorem 1, we just need to handle expectations, and will need a few
more inequalities to get a handle on the final potential.

Theorem 2

Let ε ≤ 1/2. If on some sequence of days, the best expert makes M mistakes. The ex-
pected number of mistakes the randomized weighted majority algorithm makes is at
most

(1+ε)M +
ln n

ε
.

Proof. Again, let us look at the potentialΦ=
∑

j w j , the total weight in the system. Having fixed
the outcome on all days, this potential varies deterministically.

Let Ft be the fraction of the total weight on the t th day of experts who make a mistake on that
day. This means that on day t our probability of making a mistake is Ft . Hence the expected
number of mistakes we make overall is

∑

t Ft .

On the t t h day, we claim that Φnew = Φold · (1− εFt). We can prove this as follows. Let Wwrong

be the weight of the experts who were wrong on day t , and Wcorrect be the weight of the experts
who were right. This means that Ft =Wwrong/Φold. The old potential can be written as

Φold = Wwrong
︸ ︷︷ ︸

weight goes
down (1−ε)

+ Wcorrect
︸ ︷︷ ︸

stays same

,

so the new potential is

Φnew = (1−ε)Wwrong+Wcorrect,

= (1−ε)Wwrong+ (Φold−Wwrong),

=Φold−εWwrong.

Then we can use the fact that Wwrong =ΦoldFt , to write the new potential as

Φnew =Φold−εWwrong,

=Φold−εΦoldFt ,

=Φold(1−εFt)

4

So, using the useful inequality (1+ x)≤ e x for all x ∈R, we get

Φfinal = n ·
∏

t

(1−εFt),

≤ n · e −ε
∑

t Ft

Again, we also have Φfinal ≥ (1−ε)M , so

(1−ε)M ≤ n · e −ε
∑

t Ft ⇒ ε
∑

t

Ft ≤M ln
1

(1−ε)
+ ln n .

We can now use another useful inequality, that ln 1
(1−ε) =− ln(1−ε)≤ ε+ε2 for ε ∈ [0, 1

2] to get

expected number of mistakes =
∑

t

Ft ≤ (1+ε)M +
ln n

ε
.

Pretty sweet, right? The number of mistakes we make is almost the same as the best expert,
plus this additive term that just depends on n and ε, but is independent of the input sequence.

4.1 The error rate and the “regret”
In the last section we obtained a bound on the expected total number of mistakes. Another
interesting quantity to look at is the rate of mistakes, i.e., what fraction of the time do we make
a mistake in the long run? We can take the result of Theorem 2 and divide by T to get the error
rate, so

expected number of mistakes

T
≤
(1+ε)M

T
+

ln n

εT
,

expected error rate≤
M

T
+
εM

T
+

ln n

εT

Now we note two things.

- The quantity M /T is the optimal error rate, i.e., the error rate of the best expert.

- Since the optimal number of mistakes M is at most T , we can write, εM /T ≤ ε

So we have

expected error rate≤ optimal error rate+ε+
ln n

εT

We can choose any ε we want, so lets pick one that makes this quantity as small as possible,

ε=
q

ln n
T .

our error rate ≤ optimal error rate +2

√

√ ln n

T
.

5

Remark: Regret

This last term, 2
q

ln n
T is called the “regret”, and it goes to zero as T →∞. So as we do the

prediction for longer and longer (i.e., T →∞), our error rate gets as close as we want to
the optimal error rate. (We have “vanishing regret”.)

5 Generalization
Optional content — Not required knowledge for the exams

Fractional Costs. Suppose each day t , instead of costs that are zero (no mistake) or one (mis-
take), we have costs c t

i in [0, 1]. We can extend the result to that setting with a very slight change:
update the weight of an expert i by wi ← wi (1− εc t

i). With small changes in the analysis, the
guarantee of Theorem 2 goes through unchanged! (Exercise: Show this!)

6

Exercises: Online Learning

Problem 1. Argue that, in the setting where the best expert makes no mistakes, you cannot
design a deterministic algorithm that makes fewer than log2 n mistakes in the worst case in
this setting.

Problem 2. Suppose the predictions belonged to some set of K items instead of being binary.
(E.g., you could say “cloudy”, “sunny”, “rain”, “snow”.) Give determinstic algorithms showing
the bound of O (M log n)mistakes still holds.

Problem 3. Show that, in the deterministic weighted majority algorithm, if we reduce the
weight not by 1/2 but by (1 − ε) for some ε ≤ 1/2, then the number of mistakes is at most

2(1+ε)M +O (log n
ε). (Hint: check out the approximations we use in the proof of Theorem 2.)

7

	Prediction with Expert Advice
	Warmup: Simple Strategies
	The Multiplicative Weights Algorithm
	Randomized Weighted Majority
	The error rate and the ``regret''

	Generalization
	Exercises: Online Learning

