
15-451: Algorithm Design and Analysis, Carnegie Mellon University

Linear Programming I

In this lecture, we describe a very general problem called linear programming that can be
used to express a wide variety of different kinds of problems. We can use algorithms for lin-
ear programming to solve the max-flow problem, solve the min-cost max-flow problem, find
minimax-optimal strategies in games, and many other things. We will primarily discuss the
setting and how to code up various problems as linear programs (LPs).

Objectives of this lecture

In this lecture, we will cover

- The definition of linear programming and simple examples.

- Using linear programming to solve max flow and min-cost max flow.

- Using linear programming to solve for minimax-optimal strategies in games.

1 Introduction
In recent lectures we have looked at the following problems:

- Maximum bipartite matching

- Maximum flow (more general than bipartite matching).

- Min-Cost Max-flow (even more general than plain max flow).

Today, we’ll look at something even more general that we can solve algorithmically: linear pro-
gramming. Linear Programming is important because it is so expressive: many, many prob-
lems can be coded up as linear programs (LPs). This especially includes problems of allocat-
ing resources and business supply-chain applications. In business schools and Operations Re-
search departments there are entire courses devoted to linear programming. There are also
commercial software packages charging tens of thousands of dollars per license for solving lin-
ear programs (okay they also solve more general problems too, but linear programming is the
basis for most of them)! Today we will mostly say what they are and give examples of encoding
problems as LPs. We will only say a tiny bit about algorithms for solving them.

1



2 Definition of Linear Programming
Formally, a linear programming problem is specified as follows.

Definition: Linear program

Given:

- n real-valued variables x1, . . . , xn .

- A linear objective function. e.g., 2x1+3x2+ x3.

- m linear inequalities in these variables (equalities are OK too).

e.g., 3x1+4x2 ≤ 6, or 0≤ x1 ≤ 3, etc.

Goal:

- Find values for the xi ’s that satisfy the constraints and maximize or minimize the
objective function.

Remark: No strict inequalities

Linear programs can not contain strict inequalities, e.g., x1 < 3 or x2 > 5. Why? Suppose
we wrote maximize x1 such that x1 < 3, then there does not exist an optimal solution.

Remark: Variables are real-valued

This is super important to remember!! Linear program variables take on real values, i.e.,
the variables can not be guaranteed to take integer values!

An LP may also come without an objective function, in which case we simply wish to find any
value for the xi ’s that satisfy all of the constraints. Such an LP is called a “feasibility problem”.
You can think of this as a special case of a linear program where the objective value is just a
constant (e.g., zero). We can write either minimization problems or maximization problems.

A set of xi ’s that satisfies all of the constraints is called a feasible solution. Not all linear programs
have a solution; it may be impossible to find any xi ’s that satisfy the constraints. Alternatively, it
may be the case that there is no optimal objective value because there exists feasible solutions
of arbitrarily high value. We can classify all LPs this way into three categories.

Definition: Classification of LPs

Every LP falls into one of three categories:

- Infeasible (there is no point that satisfies the constraints)

- Feasible and Bounded (there is a feasible point of maximum objective function value)

- Feasible and Unbounded (there are feasible points of arbitrarily large value)

2



An algorithm for LP should classify the input LP into one of these categories, and find the op-
timum feasible point when the LP is feasible and bounded.

3 Modeling problems as Linear Programs

3.1 An Operations Research Problem
Here is a typical Operations-Research kind of problem (stolen from Mike Trick’s course notes):
Suppose you have 4 production plants for making cars. Each works a little differently in terms
of labor needed, materials, and pollution produced per car:

labor materials pollution
plant 1 2 3 15
plant 2 3 4 10
plant 3 4 5 9
plant 4 5 6 7

Suppose we need to produce at least 400 cars at plant 3 according to a labor agreement. We
have 3300 hours of labor and 4000 units of material available. We are allowed to produce 12000
units of pollution, and we want to maximize the number of cars produced. How can we model
this?

To model a problem like this, it helps to ask the following three questions in order: (1) what
are the variables, (2) what is our objective in terms of these variables, and (3) what are the con-
straints. Let’s go through these questions for this problem.

Variables: x1, x2, x3, x4, where xi denotes the number of cars at plant i .
Objective: maximize x1+ x2+ x3+ x4.
Constraints:

xi ≥ 0 for all i

x3 ≥ 400

2x1+3x2+4x3+5x4 ≤ 3300

3x1+4x2+5x3+6x4 ≤ 4000

15x1+10x2+9x3+7x4 ≤ 12000

Note that we are not guaranteed the solution will be integral. For problems where the numbers
we are solving for are large (like here), it is usually not a very big deal because you can just round
them down to get an almost-optimal solution. However, we will see problems later where it is
a very big deal.

3.2 Modeling Maximum Flow
We can model the max flow problem as a linear program too. In fact, when we wrote down
the definitions of the max flow problem, like the capacity and conservation constraints, and
defined the net s -t flow, we pretty much did write down a linear program already!

3



Variables: Set up a variable fu v for each edge (u , v ), representing f (u , v )

Objective: maximize
∑

u∈V

fs u −
∑

u∈V

fu s . (the net s -t flow)

Constraints:
- For all edges (u , v ), 0≤ fu v ≤ c (u , v ). (capacity constraints)

- For all v ̸∈ {s , t },
∑

u∈V

fu v =
∑

u∈V

fv u . (flow conservation)

For instance, consider this example:

In this case, our LP is: maximize fs a + fs b subject to the constraints:

Capacity Conservation
0≤ fs a ≤ 4 fs a = fa c

0≤ fa c ≤ 3 fs b + fc b = fb c + fb d

0≤ fc t ≤ 2 fa c + fb c = fc b + fc t

0≤ fs b ≤ 2 fb d = fd t

0≤ fb d ≤ 3
0≤ fc b ≤ 1
0≤ fb c ≤ 2
0≤ fd t ≤ 4

3.3 Modeling Minimum-cost Max Flow
Recall that in min-cost max flow, each edge (u , v ) has both a capacity c (u , v ) and a cost $(u , v ).
The goal is to find out of all possible maximum s -t flows the one of least cost, where the cost
of a flow f is defined as

∑

(u ,v )∈E

$(u , v ) fu v .

Approach #1: Maximize flow first One simple way to do this is to first solve for the maximum
flow f , ignoring costs. Then, set up a new linear program and add the constraint that flow must
equal f , i.e.

∑

u∈V

fs u −
∑

u∈V

fu s = f

4



(plus the original capacity and flow conservation constraints), then set the objective to mini-
mize the cost

minimize
∑

(u ,v )∈E

$(u , v ) fu v

Note that we have used a minimization objective function rather than a maximization this time.
This is allowed. If you want to stick strictly to maximization problems, then you can maximize
the negative of the cost instead, as this will give you the same solution.

Approach #2: Combine the two objectives The reason that min-cost max-flow is annoying
to write as an LP is that it kind of has two objectives, to maximize flow then to minimize cost,
and we can’t directly encode two objectives into an LP. However, in some cases, it is possible to
combine two objectives into one (but not always).

To simplify the presentation, lets add two new variables, one representing the net flow and
another representing the total cost:

f =
∑

u∈V

fs u −
∑

u∈V

fu s ,

C =
∑

(u ,v )∈E

$(u , v ) fu v

How can we represent the idea of maximizing the flow while tiebreaking by costs using these
variables? One way is to multiply the cost by a very small constant ϵ, small enough that it is
definitely less than the difference between the values of any two feasible flows. Then, we can
use it to tiebreak since it will only ever matter if two feasible flows have the same value! So our
objective function becomes:

maximize f − ϵC

Approach #3: Reduce to “Minimum-cost circulation” As our last idea, instead of trying to
encode the problem with two objective functions, we can instead reduce the problem to a sim-
ilar one that only has one objective, and model that problem as a linear program.

To do so, lets forget about “producing” flow at s and “consuming” it at t and imagine that in-
stead we take all of the flow into t and “circulate” it back to s , forming a big cycle of flow instead.

5



A circulation is the same thing as a flow, except that we now require that s and t also satisfy
the conservation constraint. In this problem, there is no such concept as “net-flow” anymore,
because the net flow should always be zero, so we can’t directly ask about maximum flow. How-
ever, if we have costs on the edges, then we can write an LP for a minimum-cost circulation,
which finds a circulation of minimum possible cost.

Variables: Set up a variable fu v for each edge (u , v ), representing f (u , v )

Objective: minimize
∑

(u ,v )∈E

$(u , v ) fu v

Constraints:
- For all edges (u , v ), 0≤ fu v ≤ c (u , v ). (capacity constraints)

- For all v ,
∑

u∈V

fu v =
∑

u∈V

fv u . (flow conservation, includes s and t!)

To reduce minimum-cost max flow to a minimum-cost circulation problem, we draw the graph
as above where we connect an infinite-capacity edge from t to s , and then give that edge a very
negative cost. By giving (t , s ) a very negative cost, the solution is encouraged to send as much
flow as possible along (t , s ), which we can observe is equivalent to maximizing the s -t flow!
There are other variants of the minimum-cost circulation problem but we won’t cover those.

3.4 2-Player Zero-Sum Games
Suppose we are given a 2-player zero-sum game with n rows and n columns, and we want to
compute a minimax optimal strategy. For instance, perhaps a game like this (say payoffs are
for the row player):

column player

row
player

20 -10 5

5 10 -10

-5 0 10

Let’s see how we can use linear programming to solve this game. Informally, we want the vari-
ables to be the things we want to figure out, which in this case are the probabilities to put on
our different choices p1, . . . , pn . These have to form a legal probability distribution, and we can
describe this using linear inequalities: namely, p1+ . . .+pn = 1 and pi ≥ 0 for all i .

Our goal is to maximize the worst case (minimum), over all columns our opponent can play,
of our expected gain. This is a little confusing because we are maximizing a minimum. How-
ever, we can use a trick: we will add one new variable v (representing the minimum), put in
constraints that our expected gain has to be at least v for every column, and then define our
objective to be to maximize v . Assume our input is given as an array m where mi j represents
the payoff to the row player when the row player plays i and the column player plays j . Putting
this all together we have:

6



Variables: p1, . . . , pn and v .
Objective: Maximize v .
Constraints:

- pi ≥ 0 for all 1≤ i ≤ n ,

-
n
∑

i=1

pi = 1. (the pi form a probability distribution)

-
n
∑

i=1

pi mi j ≥ v for all columns 1≤ j ≤m

7



Exercises: Linear Programming Fundamentals

Problem 1. Our second approach to modeling minimum-cost maximum flow as an LP was
to introduce a small ϵ constant and use it to make the maximum flows be tiebroken by costs.
What would be a suitable value for ϵ that would guarantee that this method works?

Problem 2. Suppose you have an algorithm that can tell you whether an LP is feasible, but
does not give you the optimal objective value. Describe a simple method for determining the
optimal objective value using the feasibility algorithm as a black box.

8


	Introduction
	Definition of Linear Programming
	Modeling problems as Linear Programs
	An Operations Research Problem
	Modeling Maximum Flow
	Modeling Minimum-cost Max Flow
	2-Player Zero-Sum Games

	Exercises: Linear Programming Fundamentals

