
15-451: Algorithm Design and Analysis, Carnegie Mellon University

Dynamic Programming I

Dynamic Programming is a powerful technique that often allows you to solve problems that
seem like they should take exponential time in polynomial time. Sometimes it allows you to
solve exponential time problems in slightly better exponential time. It is most often used in
combinatorial problems, like optimization (find the minimum or maximum weight way of do-
ing something) or counting problems (count how many ways you can do something). We will
review this technique and present a few key examples.

Objectives of this lecture

In this lecture, we will:

- Review and understand the fundamental ideas of Dynamic Programming.

- Study several example problems:

– The Knapsack Problem

– Independent Sets on Trees (Tree DP)

– The Longest Increasing Subsequence Problem (SegTree DP)

Recommended study resources

- CLRS, Introduction to Algorithms, Chapter 15/14 (3rd/4th ed.), Dynamic Programming

- DPV, Algorithms, Chapter 6, Dynamic Programming

- Erikson, Algorithms, Chapter 3, Dynamic Programming

1

1 Introduction
Dynamic Programming is a powerful technique that can be used to solve many combinatorial
problems in polynomial time for which a naive approach would take exponential time. Dy-
namic Programming is a general approach to solving problems, much like “divide-and-conquer”,
except that the subproblems will overlap.

You may have seen the idea of dynamic programming from your previous courses, but we will
take a step back and review it in detail rather than diving straight into problems just in case you
have not, or if you have and have completely forgotten!

Key Idea: Dynamic programming

Dynamic programming involves formulating a problem as a set of subproblems, express-
ing the solution to the problem recursively in terms of those subproblems and solving
the recursion without repeating the same subproblem twice.

The two key sub-ideas that make DP work are memoization (don’t repeat yourself) and opti-
mal substructure. Memoization means that we should never try to compute the solution to
the same subproblem twice. Instead, we should store the solutions to previously computed
subproblems, and look them up if we need them again.

1.1 Warmup: Climbing Steps
Lets start with a nice problem to break down these key ideas. Suppose you can jump up the
stairs in 1-step or 2-step increments. How many ways are there to jump up n stairs?

Where is the substructure in this problem? Well, with n stairs, we have two choices, either we
jump up 1 or 2 steps. After jumping up 1 step, we will have n − 1 steps remaining, or after
jumping up 2 steps we will have n −2 steps remaining. So it sounds like some sensible smaller
problems to consider would be the number of ways to jump up n steps for any smaller value
of n . Lets define a function stairs which counts exactly this. We can evaluate stairs recursively

function stairs(n : int) −> int = {
if (n <= 1) return 1;
else {
waysToTake1Step = stairs(n−1);
waysToTake2Steps = stairs(n−2);
return waysToTake1Step + waysToTake2Steps;

}
}

We found the substructure in the problem, but we’re not done yet. Implemented as such, the
above code would perform exponentially many recursive calls because it would end up repeat-
edly evaluating the same problem. Notice that stairs(n) calls stairs(n−1) and stairs(n−2). But
stairs(n − 1) also calls stairs(n − 2), so we will call that twice. Going deeper into the recursion,
we will see that we compute the same values exponentially many times!

2

To rectify this, we apply the other key idea of dynamic programming, which is don’t repeat your-
self, aka. memoization. Lets store a lookup table of previously computed values, and instead
of recomputing from scratch every time, we will just reuse values that already exist in the table!
By convention we will refer to the lookup/memoization table as “memo”. The most generic way
to implement the memo table is to use a dictionary that maps subproblems to their values.

dictionary<int, int> memo;

function stairs(n : int) −> int = {
if (n <= 1) return 1;
if (memo[n] == None) {
waysToTake1Step = stairs(n−1);
waysToTake2Steps = stairs(n−2);
memo[n] = waysToTake1Step + waysToTake2Steps;

}
return memo[n];

}

Note that for very many problems, the memo table does not need to be implemented as a
hashtable dictionary. In the majority of problems, including this one, the subproblems are
just identified by integers from 0 . . . n , so the dictionary can actually just be implemented as
an array! A hashtable dictionary would only be required if the subproblem identifiers can not
easily be mapped to a set of small integers.

1.2 The “recipe”
With these key ideas in mind, lets give a high-level recipe for dynamic programming (DP). A
high-level solution to a dynamic programming problem usually consists of the following steps:

1. Identify the set of subproblems You should clearly and unambiguously define the set of
subproblems that will make up your DP algorithm. These subproblems must exhibit some
kind of optimal substructure property. The smaller ones should help to solve the larger ones.
This is often the hardest part of a DP problem, since locating the optimal substructure can
be tricky.

2. Identify the relationship between subproblems This usually takes the form of a recurrence
relation. Given a subproblem, you need to be able to solve it by combining the solutions to
some set of smaller subproblems, or solve it directly if it is a base case. You should also make
sure you are able to solve the original problem in terms of the subproblems (it may just be
one of them)!

3. Analyze the required runtime The runtime is usually the number of subproblems multi-
plied by the time required to process each subproblem. In uncommon cases, it can be less
if you can prove that some subproblems can be solved faster than others, or sometimes it
may be more if you can’t look up subproblems in constant time.

This is just a high-level approach to using dynamic programming. There are more details that
we need to account for if we actually want to implement the algorithm. Sometimes we are
satisfied with just the high-level solution and won’t go further. Sometimes we will want to go
down to the details. These include:

3

4. Selecting a data structure to store subproblems The vast majority of the time, our sub-
problems can be identified by an integer, or a tuple of integers, in which case we can store
our subproblem solutions in an array or multidimensional array. If things are more com-
plicated, we may wish to store our subproblem solutions in a hashtable or balanced binary
search tree.

5. Choose between a bottom-up or top-down implementation A bottom-up implementation
needs to figure out an appropriate dependency order in which to evaluate the subproblems.
That is, whenever we are solving a particular subproblem, whatever it depends on must
have already been computed and stored. For a top-down algorithm, this isn’t necessary,
and recursion takes care of the ordering for us.

6. Write the algorithm For a bottom-up implementation, this usually consists of (possibly
nested) for loops that evaluate the recurrence in the appropriate dependency order. For
a top-down implementation, this involves writing a recursive algorithm with memoization.

2 The Knapsack Problem
Imagine you have a homework assignment with different parts labeled A through G. Each part
has a “value” (in points) and a “size” (time in hours to complete). For example, say the values
and times for our assignment are:

A B C D E F G
value 7 9 5 12 14 6 12
time 3 4 2 6 7 3 5

Say you have a total of 15 hours: which parts should you do? If there was partial credit that
was proportional to the amount of work done (e.g., one hour spent on problem C earns you 2.5
points) then the best approach is to work on problems in order of points-per-hour (a greedy
strategy). But, what if there is no partial credit? In that case, which parts should you do, and
what is the best total value possible?1

The above is an instance of the knapsack problem, formally defined as follows:

Definition: The Knapsack Problem

We are given a set of n items, where each item i is specified by a size si and a value vi .
We are also given a size bound S (the size of our knapsack). The goal is to find the subset
of items of maximum total value such that sum of their sizes is at most S (they all fit into
the knapsack).

We can solve the knapsack problem in exponential time by trying all possible subsets. With
Dynamic Programming, we can reduce this to time O (nS). Lets go through our recipe book for
dynamic programming and see how we can solve this.

1Answer: In this case, the optimal strategy is to do parts A, B, F, and G for a total of 34 points. Notice that this
doesn’t include doing part C which has the most points/hour!

4

Step 1: Identify some optimal substructure Lets imagine we have some instance of the knap-
sack problem, such as our example {A, B , C , D , E , F,G } above with total size capacity S = 15.
Here’s a seemingly useless but actually very useful observation: The optimal solution either
does contain G or it does not contain G . How does this help us? Well, suppose it does contain
G , then what does the rest of the optimal solution look like? It can’t contain G since we’ve al-
ready used it, and it has capacity S ′ = S − sG . What does the optimal solution to this remainder
look like? Well, by similar logic to before, it must be the optimal solution to a knapsack problem
of total capacity S ′ on the set of items not including G ! (Formally we could prove this by con-
tradiction again—if there was a more optimal knapsack solution for capacity S ′ without G , we
could use it to improve our solution.) This is another case of optimal substructure appearing!

Step 2: Defining our subproblems Now that we’ve observed some optimal substructure, lets
try to define some subproblems. Our observation seems to suggest that the subproblems should
involve considering a smaller capacity, and considering one fewer item. How should we keep
track of which items we are allowed to use? We could define a subproblem for every subset of
the input items, but then we would have Ω(2n) subproblems, and that’s no better than brute
force! But here’s another observation: it doesn’t really matter what order we consider inserting
the items if for every single item we either use it or don’t use it, so we can instead just consider
subproblems where we are using items 1 . . . i for 0 ≤ i ≤ n . Combining these two ideas, both
the capacity reduction and the subset of items, we define our subproblems as:

V(k , B) = The value of the best subset of items from {1, 2, . . . , k} that uses at most B space

The solution to the original problem is the subproblem V (n ,S).

Step 3: Deriving a recurrence Now that we have our subproblems, we can use our substruc-
ture observation to make a recurrence. If we choose to include item k , then our knapsack has
B − sk space remaining, and we can no longer use item k , so this gives us

v (k , B) = vk +V (k −1, B − sk) if we take item k

Otherwise, if we don’t take item k , then we get

v (k , B) =V (k −1, B) if we don’t take item k

Finally, we need some base case(s). Well, if we have no items left to use k = 0, that seems like a
good base case because we know the answer is zero! So, putting this together, we can write the
recurrence:

Algorithm: Dynamic programming recurrence for Knapsack

V (k , B) =







0 if k = 0
V (k −1, B) if sk > B
max{vk +V (k −1, B − sk), V (k −1, B)} otherwise

Note here that we had to check whether sk > B . In this case, we can’t choose item k even if we
wanted to because it doesn’t fit in the knapsack, so we are forced to skip it. Otherwise, if it fits,
we try both options of taking item k or not taking item k , then use the best of the two choices.

5

Step 4: Analysis We have O (nS) subproblems and each of them requires a constant amount
of work to evaluate for the first time. So, using dynamic programming, we can implement this
solution in O (nS) time.

A top-down implementation This can be turned into a recursive algorithm. Naively this
again would take exponential time. But, since there are only O (nS) different pairs of values
the arguments can possibly take on, so this is perfect for memoizing. Let us initialize a 2D
memoization table memo[k][b] to “unknown” for all 0≤ k ≤ n and 0≤ b ≤ S .

function V(k : int, B : int) −> int = {
if (k == 0) return 0;
if (memo[k][B] != unknown) return memo[k][B]; // <− added this
if (s_k > B) result := V(k−1,B);
else result := max{v_k + V(k−1, B−s_k), V(k−1, B)};
memo[k][B] = result; // <− and this
return result;

}

Since any given pair of arguments to V can pass through the memo check only once, and in
doing so produces at most two recursive calls, we have at most 2n (S + 1) recursive calls total,
and the total time is O (nS).

So far we have only discussed computing the value of the optimal solution. How can we get
the items? As usual for Dynamic Programming, we can do this by just working backwards:
if memo[k][B] = memo[k-1][B] then we didn’t use the k th item so we just recursively work
backwards from memo[k-1][B]. Otherwise, we did use that item, so we just output the k th
item and recursively work backwards from memo[k-1][B-s_k]. One can also do bottom-up
Dynamic Programming.

3 Max-Weight Indep. Sets on Trees (Tree DP)
Given a graph G with vertices V and edges E , an independent set is a subset of vertices S ⊆ V
such that none of the vertices are adjacent (i.e., none of the edges have both of their endpoints
in S). If each vertex v has a non-negative weight wv , the goal of the Max-Weight Independent
Set (MWIS) problem is to find an independent set with the maximum weight. We now give a
Dynamic Programming solution for the case when the graph is a tree. Let us assume that the
tree is rooted at some vertex r , which defines a notion of parents/children (and ancestors/de-
scendents) for the tree. Lets go through our usual motions.

Step 1: Identify some optimal substructure Suppose we choose to include r (the root) in the
independent set. What does this say about the rest of the solution? By definition, it means that
the children of the root are not allowed to be in the set. Anything else though is fair game. In
particular, for every granchild of the root, we would like to build a max-weight independent
set rooted at that vertex. A proof by contradiction would as usual verify that this has optimal
substructure.

6

On the other hand, if we choose to not include r in our independent set, then all of the chil-
dren are valid candidates to include. Specifically, we would like to construct a max-weight in-
dependent set in all of the subtrees rooted at the children (which may or may not contain those
children themselves).

Step 2: Define our subproblems The optimal substructure suggests that our subproblems
should be based on particular subtrees. This general technique is often referred to as “tree DP”
for this reason. Our set of subproblems might therefore be

W (v) = the max weight independent set of the subtree rooted at v

The solution to the original problem is W (r).

Step 3: Deriving a recurrence Like many of our previous algorithms, we build the recurrence
by casing on possible decisions we can make. Keeping with the spirit of that, it seems like the
decision we can make at any given problem W (v) is whether or not to include the root vertex
v in the independent set. If we choose to not include it, then we should just recursively find a
max-weight set in the children’s subtrees. We let C (v) be the set of children of vertex v . Then
we have

W (v) =
∑

u∈C (v)

W (u) if we don’t choose v.

Suppose we do choose v , then what can we do? As discussed, we can no longer include any of
v ’s children without violating the rules, but we can consider any of v ’s grandchildren and their
subtrees. Let G C (v) denote the set of v ’s grandchildren. Then we have

W (v) =wv +
∑

u∈G C (v)

W (u) if we choose v.

Finally, what about base cases? If v is a leaf then the max-weight independent set just contains
v for sure. To write the full recurrence, we just take the best of the two choices, choose v or
don’t choose v .

Algorithm: Dynamic programming recurrence for max-weight independent set on a tree

W (v) =max

(

∑

u∈C (v)

W (u), wv +
∑

u∈G C (v)

W (u)

)

Wait, stop! Where’s the base case? We must have forgotten it. Or did we? Suppose v is a leaf.
Then both of the sums in the recurrence are empty because C (v) and G C (v)will both be empty.
Therefore W (v) =wv for a leaf from the second case. This means that this particular recurrence
doesn’t need an explicit base case, because it sort of comes built in to the sum over the children.

Step 4: Analysis This is our first example of a DP where the runtime needs a more sophisti-
cated analysis than just multiplying the number of subproblems by the work per subproblem.
If we were to do that naive analysis, we would get O (n 2) since there are O (n) subproblems and

7

each might have to loop over up to O (n) children/grandchildren. However, we can do better.
Note that each vertex is only the child or grandchild of exactly one other vertex (its parent or
its grandparent respectively). Therefore, each subproblem is only ever referred to by at most
two other vertices. So we can do the analysis “in reverse” or “upside down” in some sense, and
argue that each subproblem is only used at most twice, and hence the total work done is just
two times the number of subproblems, or O (n).

4 Longest Increasing Subsequence
Our next problem is the “longest increasing subsequence” (LIS) problem, which has an O (n 2)
solution, but can then be improved with some clever optimizations!

Problem: Longest Increasing Subsequence

Given a sequence of comparable elements a1, a2, . . . , an , an increasing subsequence is a
subsequence ai1

, ai2
, ..., aik−1

, aik
(i1 < i2 < . . . ik) such that

ai1
< ai2

< . . .< aik−1
< aik

.

A longest increasing subsequence is an increasing subsequence such that no other in-
creasing subsequence is longer.

Find some optimal substructure Given a sequence a1, . . . , an and its LIS ai1
, . . . , aik−1

, aik
, what

can we say about ai1
, . . . , aik−1? Since ai1

, . . . , aik
is an LIS, it must be the case that ai1

, . . . , aik−1
is

an LIS of a1, . . . aik
such that aik−1

< aik
. Alternatively, it is also an LIS that ends at (and contains)

aik−1
. This suggests a set of subproblems.

Define our subproblems Lets define our subproblems to be

LIS[i] = the length of a longest increasing subsequence of a1, . . . ai that contains ai

Note that the answer to the original problem is not necessarily LIS[n] since the answer might
not contain an , so the actual answer is

answer= max
1≤i≤n

LIS[i]

Deriving a recurrence Since LIS[i] ends a subsequence with element i , the previous element
must be anything a j before i such that a j < ai , so we can try all possibilities and take the best
one

LIS[i] =







0 if i = 0,

1+max
0≤ j<i
a j<ai

L I S [j] otherwise.

Analysis We have O (n) subproblems and each one takes O (n) time to evaluate, so we can
evaluate this DP in O (n 2) time. Is this a good solution or can we do better?

8

4.1 Optimizing the runtime: better data structures
The by-the-definition implementation of the recurrence for LIS gives an O (n 2) algorithm, but
sometimes we can speed up DP algorithms by solving the recurrence more cleverly. Specif-
ically in this case, the recurrence is computing a minimum over a range, which sounds like
something we know how to do faster than O (n)...

How about we try to apply a range query data structure (a SegTree) to this problem! Initially, its
not clear why this would work, because although we are doing a range query over 1≤ j < i , we
have to account for the the constraint that a j < ai , so we can not simply do a range query over
the values of LIS[1 . . . (i −1)] or this might include larger elements.

So here’s an idea... Let’s solve the subproblems in order by the value of the final element, instead
of just left-to-right by order of i . That way, when we solve a particular subproblem correspond-
ing to a particular final element, we will have only processed the subproblems corresponding
to all smaller elements, which are all legal to append the next larger element to!

function LIS(a : list〈int〉) −> int = {
sortedByVal := sorted list of (value, index) pairs
// SegTree is endowed with the RangeMax operation
results := SegTree(array〈int〉(size(a), 0))
for val, index in sortedByVal do {
answer := results.RangeMax(0, index) + 1 // Solve the subproblem
results.Assign(index, answer) // Store the subproblem

}
return results.RangeMax(0, size(a))

}

This optimized algorithm performs two SegTree operations per iteration, and it has to sort the
input, so in total it takes O (n log n) time.

Key Idea: Speed up DP with data structures

If your DP recurrence involves computing a minimum, or a sum, or searching for some-
thing specific, you can sometimes speed it up by storing the results in a data structure
other than a plain array (e.g., a SegTree or BST).

9

Exercises: Dynamic Programming

Problem 1. We showed how to find the weight of the max-weight independent set. Show how
to find the actual independent set as well, in O (n) time.

Problem 2. Give an example where using the greedy strategy for the 0-1 knapsack problem will
get you less than 1% of the optimal value.

Problem 3. Suppose you are given a tree T with vertex-weights wv and also an integer K ≥ 1.
You want to find, over all independent sets of cardinality K , the one with maximum weight. (Or
say “there exists no independent set of cardinality K ”.) Give a dynamic programming solution
to this problem.

Problem 4. Can you find a greedy algorithm that matches the O (n log n) performance of the
LIS algorithm above?

Problem 5. Write a different implementation of the LIS algorithm that still uses a SegTree but
loops over i and uses range queries on j instead (the opposite of the solution above).

10

	Introduction
	Warmup: Climbing Steps
	The ``recipe''

	The Knapsack Problem
	Max-Weight Indep. Sets on Trees (Tree DP)
	Longest Increasing Subsequence
	Optimizing the runtime: better data structures

	Exercises: Dynamic Programming

