
15-451: Algorithm Design and Analysis, Carnegie Mellon University

Streaming Algorithms

Today we’ll talk about a topic that is both very old (as far as computer science goes), and very
current. It’s a model of computing where the amount of space we have is much less than the
amount of data we examine, and hence we can store only a “summary” or “sketch” of the data.
Back at the dawn of CS, data was stored on tapes and the amount of available RAM was very
small, so people considered this model. And now, even when RAM is cheap and our machines
have gigabytes of RAM and terabytes of disk space, it may be listening to an Ethernet cable
carrying gigabytes of data per second, or training a machine learning model with terrabytes of
training data. What can we compute in this model where our space is very limited compared
to the size of the input?

Objectives of this lecture

In this lecture, we will:

- Introduce the data streaming model, and its concerns.

- Analyze an algorithm for heavy hitters in the arrivals-only model.

- Analyze an algorithm for heavy hitters with both arrivals and departures.

1 Introduction
Today’s lecture will be about a slightly different computational model called the data streaming
model. In this model you see elements going past in a “stream”, and you have very little space to
store things. For example, you might be running a program on an Internet router, the elements
might be IP Addresses, and you have limited space. You certainly don’t have space to store all
the elements in the stream. Once you have read an element of the stream, you can not look
back at prior elements of the stream. The question is: which functions of the input stream can
you compute with what amount of time and space?

We will denote the stream elements by

a1, a2, a3, . . . , at , . . .

We assume each stream element is from alphabetΣ and takes b bits to represent. For example,
the elements might be 32-bit integers IP Addresses. We imagine we are given some function,
and we want to compute it continually, on every prefix of the stream. Let us denote a[1:t] =
〈a1, a2, . . . , at 〉.

1

Let us consider some examples. Suppose we have seen the integers

3, 1, 17, 4,−9, 32, 101, 3,−722, 3, 900, 4, 32, . . . (⋄)

Computing the sum Here, F (a[1:t]) =
t
∑

i=1

ai . We want the outputs

3, 4, 21, 25, 16, 48, 149, 152,−570,−567, 333, 337, 369, . . .

If we have seen T numbers so far, the sum is at most T 2b and hence needs at most O (b + log T)
bits of space. So we can keep a counter, and when a new element comes in, we add it to the
counter.

Computing the max How about the maximum of the elements so far? F (a[1:t]) =
t

max
i=1

ai . Even

easier. The outputs are:

3, 1, 17, 17, 17, 32, 101, 101, 101, 101, 900, 900, 900

We just need to store b bits.

Computing the median The outputs on the various prefixes of (⋄) now are

3, 1, 3, 3, 3, 3, 4, 3, . . .

Doing this with small space is a lot more tricky.

The number of distinct elements Again, this is quite tricky to do exactly in low space.

Heavy hitters These are elements that have appeared most frequently in the stream.

You can imagine the applications of this model. An Internet router might see a lot of packets
whiz by, and may want to figure out which data connections are using the most space? Or how
many different connections have been initiated since midnight? Or the median (or the 90t h

percentile) of the file sizes that have been transferred. Which IP connections are “elephants”
(say the ones that have used more than 0.01% of your bandwidth)? Even if you are not working
at “line speed”,1 but just looking over the server logs, you may not want to spend too much time
to find out the answers, you may just want to read over the file in one quick pass and come up
with an answer. Such an algorithm might also be cache-friendly. But how to do this? Two of
the recurring themes will be:

- Approximate solutions: in several cases, it will be impossible to compute the function ex-
actly using small space. Hence we’ll explore the trade-offs between approximation and space.
For example, we will develop algorithms that admit false positives, and algorithms that ap-
proximate the answers with some amount of error.

- Hashing: this will be a very powerful technique.
1Such a router might see tens of millions of packets per second.

2

Remark: Measuring space in terms of bits

In this lecture, we will be focusing on space bounds rather than runtime. Additionally, in
this model, we will be measuring the space usage of an algorithm in terms of the number
of bits needed, rather than the number of words. In many other models, we would think
of the space required to store n integers as O (n) words. Outside the word RAM model,
storing a sequence of n integers in the range 0 to n uses O (n log n) bits of space, because
each integer requires O (log n) bits. In general, in this model, storing n integers of b bits
each takes O (n b) space. It is important to keep this in mind.

2 Finding ϵ-Heavy Hitters
Let’s formalize things a bit. We have a data stream with elements a1, a2, . . . , at seen by time t .
Think of these elements as “arriving” and being added to a multiset St , with S0 = ;, S1 = {a1},
. . . ,Si = {a1, a2, . . . , ai }, etc. Let

countt (e) = {i ∈ {1, 2, . . . , t } | ai = e }

be the number of times e has been seen in the stream so far. The multiplicity of e in St .

Definition 1: ϵ-heavy-hitters

Element e ∈Σ is called an ϵ-heavy hitter at time t if countt (e)> ϵt . That is, e constitutes
strictly more than ϵ fraction of the elements that arrive by time t .

The goal is simple — given an threshold ϵ ∈ [0, 1], maintain a data structure that is capable of
outputting ϵ-heavy-hitters. At any point in time, we can query the data structure, and it outputs
a set of at most 1/ϵ elements that contains all the ϵ-heavy hitters. At any moment in time, there
are at most 1/ϵ elements that are ϵ-heavy-hitters, so this request is not unreasonable.

Remark

It’s OK to output “false positives” but we are not allowed “false negatives”, i.e., we’re not
allowed to miss any heavy-hitters, but we could output non-heavy-hitters. (Since we
only output 1/ϵ elements, there can be ≤ 1/ϵ-false positives.)

For example, if we’re looking for 1
3 -heavy-hitters, and the stream is

E , D , B , D , D 5, D , B , A, C , B 10, B , E , E , E , E 15, E · · ·

(the subscripts are not part of the stream, just to help you count) then

- at time 5, the element D is the only 1
3 -heavy-hitter,

- at time 11 both B and D are 1
3 -heavy-hitters, and

- at time 15, there is no 1
3 -heavy-hitter, and

3

- at time 16, only E is a 1
3 -heavy-hitter.

Note that as time passes, the set of frequent elements may change completely, so an algorithm
would have to be adaptive. We cannot keep track of the counts for all the elements we’ve seen
so far, there may be a lot of different elements that appear over time, and we have limited space.

Any ideas for how to find some “small” set containing all the ϵ-heavy-hitters?

Hmm, one trick that is useful in algorithm design, as in problem solving, is to try simple cases
first. Can you find a 1-heavy-hitter? (Easy: there is no such element.) How about a 0.99-heavy-
hitter? Random sampling will also work (maybe you’ll see this in a homework or recitation),
but let’s focus on a deterministic algorithm for right now.

2.1 Finding a Majority Element
Let’s first try to solve the problem of finding a 0.5-heavy-hitter, a.k.a. a majority element, an
element that occurs (strictly) more than half the time. Keeping counts of all the elements is
very wasteful! How can we find a majority element while using only a little space? Here’s an
algorithm (due to R. Boyer and J.S. Moore) that keeps very little information.

Algorithm 1: Boyer-Moore Majority

We keep one element from Σ, which is our candidate majority element, in a variable
called candidate, and a counter

candidate = ⊥
counter = 0

When element at arrives
if (counter == 0)
set candidate = at and counter = 1

else
if at == candidate
counter++

else
counter−−

At the end, return candidate.

Intuitively, this algorithm works because a majority element occurs strictly more than half the
time, and the counter variable is counting at least how many more times this element occurs
than any other element, which must be a positive amount. It may, however, output a false
positive when there does not exist a majority element.

- Suppose there is no majority element, then we’ll output a false positive. As we said earlier,
that’s OK: we want to output a set of size 1 that contains the majority element, if any.

- If there is a majority element, we will indeed output it. Why? Observe: when we discard
an element at , we also throw away another (different) element as well. (Decrementing the
counter is like throwing away one copy of the element in candidate.) So every time we

4

throw away a copy of the majority element, we throw away another element too. Since there
are fewer than half non-majority elements, we cannot throw away all the majority elements.

2.2 Finding an ϵ-heavy-hitter
We can extend this idea to finding ϵ-heavy-hitters.2 Set k = ⌈1/ϵ⌉−1; for ϵ = 1/2, we’d get k = 1.

Algorithm 2: ϵ-heavy-hitters

We keep an array Candidates[1 . . . k], where each location can hold one element from Σ;
and an array Counts[1 . . . k], where each location can hold a non-negative integer.

Candidates[i] =⊥ for all 1≤ i ≤ k
Counts[i] = 0 for all 1≤ i ≤ k

When element at arrives.
if at ==Candidates[j] for some j, then Counts[j]++.
else if Counts[j] == 0 for some j then Candidates[j]← at and Counts[j]← 1.
else decrement all the counters by 1.

An an exercise, check that this algorithm is identical to the one above for ϵ = 1/2.

To analyze the algorithm and prove that it is correct, we define the estimated count which cor-
responds to the current count that the algorithm is maintaining for each of the candidates (or
zero for those elements which are not currently a candidate):

estt (e) =

¨

Counts[j] if e ==Candidates[j]

0 otherwise

The main claim naturally extends the proof for the case of majority.

Lemma 1

The estimated counts satisfy:

0≤ countt (e)−estt (e)≤
t

k +1
≤ ϵt

Proof. The estimated count estt (e) is at most the actual count, since we never increase a counter
for e unless we see e . So countt (e)−estt (e)≥ 0. (In other words, estt (e)≤ countt (e), it is always
an underestimate.)

To prove the other inequality, think of the arrays Counts and Candidates saying that we have
Counts[1] copies of Candidates[1], Counts[2] copies of Candidates[2], etc., in our hand. Look
at some time when the difference between countt (e) and estt (e) increases by 1. Each time

2The extension to finding ϵ-heavy-hitters was given by J. Misra and D. Gries, and independently by R.M. Karp,
C.H. Papadimitriou and S. Shenker.

5

this happens, we decrement k different counters by 1 and discard an element (which is not
currently present in the candidates array). This is like dropping k +1 distinct elements (one of
which is e). We can drop at most t elements until time t . So the gap can be at most t /(k + 1).
And since k = ⌈1/ϵ⌉ −1≥ 1/ϵ−1, we get that t /(k +1)≤ ϵt .

Corollary 1

For every n , the set of items in the array T contains all the ϵ-heavy-hitters.

Proof. After we’ve seen n elements, the ϵ-heavy-hitters have occurred at least countt (e) > ϵt
times. If e is a ϵ-heavy-hitter, by Lemma 1, the estimate

estt (e)≥ countt (e)− ϵt > 0.

So element e must be in the array T .

To summarize: if we set k = ⌈1/ϵ⌉ − 1, we get an algorithm that gives us element counts on a
stream of length t to within an additive error of at most (ϵ · t) with space O (1/ϵ) · (logΣ+ log t)
bits. As a corollary we get an algorithm to find a set containing the ϵ-heavy-hitters.

3 Heavy Hitters with Deletions
In the above problem, we assumed that the elements were only being added to the current set
at each time. We maintained an approximate count for the elements (up to an error of ϵt). Now
suppose we have a stream where elements can be both added and removed from the current
set. How can we give estimates for the counts?

Formally, each time we get an update, it looks like (add, e) or (del, e). We will assume that for
each element, the number of deletes we see for it is at most the number of adds we see — the
running counts of each element is non-negative. As an example, suppose the stream looked
like:

(add, A), (add, B), (add, A), (del, B), (del, A), (add, C)

then the sets at various times are

S0 = ;,S1 = {A},S2 = {A, B },S3 = {A, A, B },S4 = {A, A},S5 = {A},S6 = {A, C }, . . .

The counts of the element are defined in the natural way: count3(A) = 2 and count5(A) = 1.
Observe that the “active” set St has size |St |=

∑

e∈Σ countt (e), and its size can grow and shrink.

What do we want want now? We want a data structure to answer count queries approximately.
Specifically, at any point in time t , for any element, we should be able to ask “What is countt (e)?”
The data structure should respond with an estimate estt (e) such that

Pr
�

�

�estt (e)− countt (e)
�

�

︸ ︷︷ ︸

error

≤ ϵ|St |
︸︷︷︸

is small

�

≥ 1−δ
︸︷︷︸

with high probability

.

6

Again, we would again like to use small space — perhaps even close to the

O (1/ϵ) · (logΣ+ log |St |) bits of space

we used in the above algorithm. (As you’ll see, we’ll get close.)

3.1 A Hashing-Based Solution: First Cut
We’re going to be using hashing for this approach, simple and effective. We’ll worry about what
properties we need for our hash functions later, for now assume we have a hash function h :
Σ→{0, 1, . . . , k −1} for some suitably large integer k .

Algorithm 3: Approximate count

Maintain an array counts[1 . . . k] capable of storing non-negative integers.

when update a_t arrives
if (a_t == (add, e)) then
counts[h(e)]++;

else // a_t == (del, e)
counts[h(e)]−−;

One way to think about this is that we are just maintaining a hashtable without collision reso-
lution. This was the update procedure. And what is our estimate for the number of copies of
element e in our active set St ? It is

estt (e) := counts[h (e)].

In words, we look at the location h (e)where e gets mapped using the hash function h , and look
at counts[h (x)] stored at that location. What does it contain? It contains the current count for
element e for sure. But added to it is the current count for any other element that also gets
mapped to that same location. In math:

counts[h (e)] =
∑

e ′∈Σ
countt (e

′) ·1(h (e ′) = h (e)),

where 1(some condition) is a function that evaluates to 1 when the condition in the parentheses
is true, and 0 if it is false. We can rewrite this as

A(h (e)) = countt (e) +
∑

e ′ ̸=e

countt (e
′) ·1(h (e ′) = h (e)),

or using the definition of the estimate, as

estt (e)− countt (e) =
∑

e ′ ̸=e

countt (e
′) ·1(h (e ′) = h (e)). (1)

A great situation will be if no other elements e ′ ̸= e hashed to location h (e) and the error (i.e.,
the summation on the right) evaluates to zero. But that may be unlikely. On the other hand, we
can show that the expected error is not too much.

7

What’s the expected error? Now we need to assume something good about the hash functions.
Assume that the hash function h is a random draw from a universal family. Recall the definition
from earlier in the course:

Definition: Universal hashing

A familyH of hash functions from Σ→ [k] is universal if for any pair of keys x1, x2 ∈ Σ
with x1 ̸= x2,

Pr[h (x1) = h (x2)]≤
1

k
.

In other words, if we just look at two keys, the probability that they collide is no more than if
we chose to map them randomly into the range [k]. We gave a construction where each hash
function in the family used (lg k) · (lg |Σ|) bits to specify.

Good. So we drew a hash function h from this universal hash familyH , and we used it to map
elements to locations {0, 1, . . . , k −1}. What is its expected error? From (1), it is

E





∑

e ′ ̸=e

countt (e
′) ·1(h (e ′) = h (e))



=
∑

e ′ ̸=e

countt (e
′) ·E
�

1(h (e ′) = h (e))
�

(2)

=
∑

e ′ ̸=e

countt (e
′) ·Pr[h (e ′) = h (e)]

≤
∑

e ′ ̸=e

countt (e
′) · (1/k) (3)

=
|St | − countt (e)

k
≤
|St |
k

.

We used linearity of expectations in equality (2). To get (3) from the previous line, we used the
definition of a universal hash family. Let’s summarize:

Claim 1

The estimator estt (e) = counts[h (e)] ensures that

(a) estt (e)≥ countt (e), and

(b) E [estt (e)]− countt (e)≤ |St |/k .

The space used is: k counters, and O ((log k)(logΣ)) to store the hash function.

That’s pretty awesome. (But perhaps not so surprising, once you think about it.) Note that if
we were only doing arrivals and no deletions, the size of St would be exactly t . So the expected
error would be at most t /k , which is about the same as we were getting in Section 2 using an
array of size (k −1). But now we can also handle deletions!

What’s the disadvantage? We only have a bound on the expected error E [estt (e)]−countt (e). It
is no longer deterministic. Also, the expected error being small is weaker than saying: we have
small error with high probability. So let’s see how to improve things.

8

3.2 Amplification of the Success Probability
Any ideas how to amplify the probability that we are close to the expectation? The idea is
simple: independent repetitions. Let us pick m hash functions h1, h2, . . . , hm . Each hi : Σ →
{0, 1, . . . , k − 1}. How do we choose these hash functions? Independently from the universal
hash family H .3

Algorithm: CountMin sketch

We have m arrays counts1, counts2, . . . , countsm , one for each hash function. The al-
gorithm now just uses the i th hash function to choose a location in the i t h array, and
increments or decrements the same as before.

when update a_t arrives
for each i from 1..m
if (a_t == (add, e)) then
counts_i[h_i(e)]++

else // a_t == (delete, e)
counts_i[h_i(e)]−−

And what is our new estimate for the number of copies of element e in our active set? It is

bestt (e) :=
m

min
i=1

countsi [hi (e)].

In other words, each (hi , countsi) pair gives us an estimate, and we take the least of these. It
makes perfect sense — the estimates here are all overestimates, so taking the least of these is
the right thing to do. But how much better is this estimator? Let’s do the math.

What is the chance that one single estimator has error more than 2|St |/k ? Remember the ex-
pected error is at most |St |/k . So by Markov’s inequality

Pr
�

error> 2 ·
|St |
k

�

≤
1

2
.

And what is the chance that all of the m copies have “large” (i.e., more than 2|St |/k) error? The
probability of m failures is

Pr[each of m copies have large error]

=
m
∏

i=1

Pr[i t h copy had large error]

≤ (1/2)m .

The first equality there used the independence of the hash function choices. (Only if events
A ,B are independent you can use Pr[A ∧B] = Pr[A] · Pr[B].) And so the minimum of the
estimates will have “small” error (i.e., at most 2|St |/k) with probability at least 1− (1/2)m .

3If we use the random binary matrix hash family construction given in the hashing lecture, this means the (lg k) ·
(lg |Σ|)-bit matrices for each hash function must be filled with independent random bits.

9

3.2.1 Final Bookkeeping

Let’s set the parameters now. Set k = 2/ϵ, so that the error bound 2|St |/k = ϵ|St |. And suppose
we set m = lg 1/δ, then the failure probability is (1/2)m = δ, and our query will succeed with
probability at least 1−δ. 4

Then on any particular estimate bestt (e)we ensure

Pr
�

�

�bestt (e)− countt (e)
�

�≤ ϵ|St |
�

≥ 1−δ.

Just as we wanted. And the total space usage is

m ·k counters=O (log 1/δ) ·O (1/ϵ) =O (1/ϵ log 1/δ) counters.

Each counter has to store at most lg T -bit numbers after T time steps. 5

Space for Hash Functions: We need to store the m hash functions as well. How much space
does that use? The random binary matrix method that we learned earlier in the course used
s := (lg k) · (lgΣ) bits per hash function. Since k = 1/ϵ, the total space used for the functions is

m · s =O (log 1/δ) · (lg 1/ϵ) · (lgΣ) bits.

3.2.2 And in Summary...

Using about 1/ϵ × poly-logarithmic factors space, and very simple hashing ideas, we could
maintain the counts of elements in a data stream under both arrivals and departures (up to an
error of ϵ|St |). As in the arrival-only case, these counts make sense only for very high-frequency
elements.

4How small should you make δ? Depends on how many queries you want to do. Suppose you want to make
a query a million times a day, then you could make δ = 1/109 ≈ 1/230 a 1-in-1000 chance that even one of your
answers has high error. Our space varies linearly as lg 1/δ, so setting δ = 1/1018 instead of 1/109 doubles the space
usage, but drops the error probability by a factor of billion.

5So a 32-counter can handle a data stream of length 4 billion. If that is not enough, there are further techniques
to reduce this space usage as well.

10

	Introduction
	Finding -Heavy Hitters
	Finding a Majority Element
	Finding an -heavy-hitter

	Heavy Hitters with Deletions
	A Hashing-Based Solution: First Cut
	Amplification of the Success Probability
	Final Bookkeeping
	And in Summary...

