15-451: Algorithm Design and Analysis, Carnegie Mellon University

Fingerprinting & String Matching

In today’s lecture, we will talk about randomization and hashing in a slightly different way. In
particular, we use arithmetic modulo prime numbers to probabilistically check if two strings
are equal to each other. Building on that, we will get an randomized algorithm (called the Karp-
Rabin fingerprinting scheme) for checking if a long text T contains a certain pattern string P as
a substring. This technique is surprisingly elegant and extremely extensible!

Objectives of this lecture

In this lecture, we will:
- Cover some facts about prime numbers that are useful for randomized hashing schemes
- See a new application of hashing to string equality checking

- Look at the Karp-Rabin pattern matching algorithm

Recommended study resources

- CLRS, Introduction to Algorithms, Section 32.2, The Rabin-Karp algorithm

- DPV, Algorithms, Section 1.3.1, Generating random primes

1 How to Pick a Random Prime

In this lecture, we will often be picking random primes, so let’s talk about that. This is used
in many widely used algorithms, for example, you do this when generating RSA public/pri-
vate key pairs. So, how do we actually pick a random prime in some range {1,..., M}? Here’s a
straightforward approach:

Algorithm: Random prime generation

- Pick arandom integer x in the range {1,..., M }.

- Checkif x is a prime. If so, output it. Else go back to the first step.

Okay this is not quite complete, we have to fill in some details. How would you pick a random
number in the prescribed range? Pick a uniformly random bit string of length [log, M |+1. (We
assume we have access to a source of random bits.) If it represents a number < M, output it,

else repeat. The chance that you will get a number < M is at least half, so in expectation you
have to repeat this process at most twice.

How do you check if x is prime? You can use the Miller-Rabin randomized primality test!
(which may produce false positives, but it will only output “prime” when the number is com-
posite with very low probability). There are other randomized primality tests as well, see the
Wikipedia page. Or you can use the Agrawal-Kayal-Saxena? primality test, which has a worse
runtime, but is deterministic and hence guaranteed to be correct. We won'’t cover those algo-
rithms in this course, so for now, just know that they exist, we can use them, and know that they
run in O(polylog M) time.

2 How Many Primes?
You have probably seen a proof that there are infinitely many primes. Here’s a different question
that we’ll need for this lecture.

For positive integer n, how many primes are there in the set{1,2,...,n}?

Let there be 7(n) primes between 0 and 7. One of the great theorems of the 20" century was
the Prime Number theorem:

Theorem 1: The prime number theorem

The prime counting function 7(n) satisfies

. n(n)
nlggo n/(lnn) L

And while this is just a limiting statement, an older result of Chebyshev (from 1848) says that

Theorem 2: Chebyshev

For n > 2, the prime counting function 7t(n) satisfies

n

7
n(n)Z—L:(l.ZBZ...) >
8Inn

log,n log, n

Here are two consequences of this theorem. The first is that a random integer between 1 and
n is a prime number with probability at least 1/log, n. We also get the following fact:

Corollary 1: Density of primes

If we want at least k > 4 primes between 1 and n, it suffices to have n > 2klog, k.

'http://en.wikipedia.org/wiki/Miller-Rabin_primality_test
*http://en.wikipedia.org/wiki/AKS_primality_test

http://en.wikipedia.org/wiki/Prime_number_theorem
http://mathworld.wolfram.com/PrimeNumberTheorem.html
http://en.wikipedia.org/wiki/Miller-Rabin_primality_test
http://en.wikipedia.org/wiki/AKS_primality_test

Proof. Just plugging in to Theorem 2, we get

2klog, k 2klog, k
(2klog, k) > 8L 9%, >k
log,(2klog, k) ~ log, 2 +log, k +1log, log, k

2.1 Tighter Bounds
The following even tighter set of bounds were proved by Pierre Dusart in 2010.
Theorem 3: Dusart

For all n > 60184 we have:

n

> >
m(n) Inn—1

n
Inn—1.1

Because this is a two-sided bound, it allows us to deduce a lower bound on the number of
primes in a range. For example, the number of 9-digit prime numbers (i.e. primes in the range
[108,109—1]) is

10°—1 108—1

— =44928097.3...
n(109—1)—1 In(108—1)—1.1

m(10°—1)—m(108—1)> ;

From this we can infer that a randomly generated 9 digit number is prime with probability
at least 0.049920.... Thus, the random sampling method would take at most 21 iterations in
expectation to find a 9-digit prime.

3 The String Equality Problem

Here’s a simple problem: we're sending a Mars lander. Alice, the captain of the Mars lander,
receives an N -bit string x. Bob, back at mission control, receives an N -bit string y. Alice knows
nothing about y, and Bob knows nothing about x. They want to check if the two strings are the
same, i.e., if x = y. 3 One way is for Alice to send the entire N-bit string to Bob. But N is very
large. And communication is super-expensive between the two of them. So sending IV bits will
cost a lot. Can Alice and Bob share less communication and check equality?

If they want to be 100% sure that x = y, then one can show that fewer than NV bits of communi-
cation between them will not suffice. But suppose we are OKwith being correct with probability
0.9999. Formally, we want a way for Alice and Bob to send a message to Bob so that, at the end
of the communication:

- If x =y, then Pr[Bob says equal |=1.
- If x # y, then Pr[Bob says equal | < 6.

3E.g., this could be an update to the lander firmware, and we want to make sure the file did not get corrupted

Here's a protocol that does almost that. We will hash the strings using the hash function h,(x) =
(x mod p) for arandom prime p, then check whether the hashes are equal.

Algorithm: Randomized string equality test

1. Alice picks a random prime p from the set {1,2,..., M} for M =[(200N)-log,(100N)].
2. She sends Bob the prime p, and also the value h,(x) :=(x mod p).
3. Bob checksif h,(x)=y mod p. If so, he says equal else he says not equal.

. v

For now, let’s not worry about where the particular value of M came from: it will arise naturally.
Let’s see how this protocol performs.

If x = y, then Bob always says equal.

Proof. Indeed, if x = y, then x mod p =y mod p. So Bob’s test will always succeed. O

If x # y, then Pr[Bob says equal | < 155.

Proof. Consider x and y and N-bit binary numbers. So x,y < 2V. Let D = |x — y| be their
difference. Bob says equal only when x mod p =y mod p, or equivalently (x —y)=0 mod p.
This means p divides D =|x — y|. In words, the random prime p we picked happened to be a
divider of D. What are the chances of that? Let’s do the math.

The difference D isa N -bitinteger, so D < 2V. So D can be written (uniquely) as D = p;p, -+ px.,
each p; being a prime, where some of the primes might repeat*. Each prime p; > 2, so D =
P2 Pr = 2F. Hence k < N: the difference D has at most N prime divisors. The probability
that the randomly chosen prime p is one of them is

N
number of primes in {1,2,..., M}’

We want this to be at most 1/100, i.e., we would like that the number of primes in {1, 2,..., M}
is at least 100N. But Corollary 1 says that choosing M > 200N log, 100N will give us at least
100N primes. Hence

N N 1

Pr[Bob falsel al] < < <—.
il Bo sely says equal | number of primes in {1,2,...,M} ~ 100N ~ 100

4This unique prime-factorization theorem is known as the fundamental theorem of arithmetic.

https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic

3.1 Communication cost

Naively, Alice could have sent x over to Bob. That would take N bits. Now she sends the prime
p, and x mod p. That’s two numbers at most M = 200N log, 100N. The number of bits re-
quired for that:

2log, M =2log,(200N log, 100N)) = O(log N).

To put this in perspective, suppose x and y were two copies of all of Wikipedia. Say that’s about
25 billion characters (25 GB of data!). Say 8 bits per character, so N ~ 2-10'! bits. With the new
approach, Alice sends over 21og,(200N log, 100N)) ~ 100 bits, or 13 bytes of data. That’s a lot
less communication!

3.2 Reducing the Error Probability

If you don't like the probability of error being 1%, here are two ways to reduce it.

Approach #1 Have Alice repeat this process multiple times independently with different ran-
dom primes, with Bob saying equal if and only if in all repetitions, the test passes. For example,
for 5 repetitions, the chance that he will make an error (i.e., say equal when x # y) is only

(1/100)° =1071°

That’s a 99.999999999% chance of success! In general, if we repeat R times, we get the prob-
ability of error is at most (1/100)%, so if we desire an error probability of §, we should do R =
log,0(1/0) repetitions. Since each round requires communicating O(log N) bits, the total num-
ber of bits that Alice must communicate is

O(log(1/8)logN).

Can we do better than this?

Approach #2 Have Alice choose a random prime from a larger set. For some integer s > 1, if
we choose M =2-sNlog,(sN), then the arguments above show that the number of primes in
{1,...,M}is atleast sN. And hence the probability of error is 1/s. If we desire an error proba-
bility of 6, then we must choose s =1/6. For example, to obtain 99.999% chance of success, we
would pick s =1/107% = 10°. Now Alice is communicating two integers at most 2- s N log,(s N),
so the number of bits is

2log,(2-sNlog,(sN))=2log, s +2log, N +2log,(log,(sN))+2,
=O(logs +logN),
= O(log(1/6)+logN).

This is much better than Approach #1!

4 TheKarp-RabinAlgorithm (the “Fingerprint” method)

Let’s use this idea to solve a different problem.

Problem: Pattern matching

In the pattern matching problem, we are given, over some alphabet ¥,
- Atext T, of length n.
- A pattern P, of length m.

The goal is to output the locations of all the occurrences of the pattern P inside the text
T.E.g, if T = abracadabra and P = ab then the output should be {0, 7}.

. V.

There are many ways to solve this problem, but today we will use randomization to solve this
problem. This solution is due to Karp and Rabin. The idea is smart but simple, elegant and
effective—like in many great algorithms. To simplify the presentation, we will start by assuming
that > = {0,1}, i.e., all of our strings are written in binary, but the ideas generalize to larger
alphabets.

4.1 The Karp-Rabin Idea: “Rolling the hash”

As in the last section, interpret the string written in binary as an integer and use the hash
h,(x)=(x mod p)

for some randomly chosen prime p.

Now look at the string x” obtained by dropping the leftmost bit of x, and adding a bit to the
right end. E.g., if x = 0011001 then x’ might be 0110010 or 0110011. If I told you h,(x) = z,
can you compute h,(x’) fast?

X

00110011

X

Let x; be the lowest-order (rightmost) bit of x’, and x;, be the highest order (leftmost) bit of x.
Now observe that

- removing the high-order bit (x},) is just equivalent to subtracting x;, - 2",
- shifting all of the remaining bits to one higher position is equivalent to multiplying by 2,

- appending the low-order bit x; is equivalent to just adding x;.

Therefore, we can write
x'=2(x—x,-2")+x]

Since hy(a + b) = (h,(a)+ h,(b)) mod p, and h,(2a)=2h,(a) mod p, we then have
hy(x")=(2h,(x)—x - h,(2™)+ x;) mod p.

Take a moment to understand the significance of this fact. Given the hash h,(x) for the sub-
string x and the value h,(2™), we can compute the hash of the next adjacent substring h,,(x’)
in just a constant number of arithmetic operations modulo p. This is an enormous speedup
compared to computing h,(x’) from scratch which would take O(m) arithmetic operations.

4.2 The pattern matching algorithm

To keep things short, let T; _ ; denote the string from the i th to the j™ positions of T, inclusive.
So the string matching problem is: output all the locations i € {0, 1,..., n—m} such that

Ti. ivm—1)=P.

Here’s the algorithm.

Algorithm: Karp-Rabin pattern matching

1. Pick arandom prime p in {1,..., M} for M =[2smlog,(sm)] (we'll choose s later.)
2. Compute h,(P)and h,(2™), and store these results.
3. Compute h,(Ty. 1), and check if it equals h,(P). If so, output match at position 0.
4. Foreachi<€{0,...,n—m—1}
(i) compute hy(Tir1.i+m) using (T ivm—1)

(i) If hy(Tis1..i+m) = hyp(P), output match at position i+ 1.

. v

Notice that we’ll never have a false negative (i.e., miss a match) but we may erroneously output
location that are not matches (have a false positive) if we get a hash collision! Let’s analyze the
error probability, and the runtime.

Probability of Error Since the Karp-Rabin algorithm can encounter false positives, we should
analyze the probability of them occuring. This will also show us how large of a prime number
of we need to pick in order to achieve a desired false positive probability.

Theorem: Error probability of Karp-Rabin

We can achieve an error probability of 0 using the Karp-Rabin algorithm with a prime
of O (log(3)+log m +logn) bits.

Proof. We do n—m different comparisons, each has a probability 1/s of failure. So, by a union
bound, the probability of having at least one false positive is at most n/s. Hence, setting s =
1007 will make sure we have at most a 155 chance of even a single mistake.

This means we set M = (200- mn)log,(100 - mn), which requires log, M +1 = O(log m +logn)
bits to store. Hence our prime p is also at most O(log m+logn) bits.®> Generalizing this, picking
a prime from the range M =(2/6 - mn)log,(1/6 - mn) achieves a failure probability of 6 with a
prime of O (log(%) +logm +log n) bits. O

Running Time Continuing to work in the word-RAM model, note that since the inputs con-
sists of an n-length string and an m-length string, our word-RAM must have w > log(n) and
w > log(m) to be able to index into the input. It is common in randomized algorithms to seek
polynomial failure probability, i.e., the probability of failure should be proportional to

1

0=—F——"",
O(poly(n,m))

where the notation poly(n, m) means any polynomial expression in n and m. Since p < M,
we have that log M = O(logpoly(n, m)) = O(log n +log m) and hence all arithmetic on integers
mod p can be done in constant time!

Theorem: Running time of Karp-Rabin

The Karp-Rabin pattern matching algorithm runs in O(m + n) time.

Proof. Since p < M and all of our calcuations are done mod p, each individual arithmetic op-
eration takes constant time.

- Computing h,(x) for m-bit x can be done in O(m) time. So each of the hash function com-
putations in Steps 2 and 3 take O(m) time.

- Now, using the idea in Section 4.1, we can compute each subsequent hash value in O(1) time!
So iterating over all the values of i takes O(n) time.

That'’s a total of O(m + n) time! You can’t do much faster, since the input is m + n bits long. We
did not talk about the complexity of picking the prime since we did not cover the complexity of
the best primality testing algorithms, but this step can also be shown to run in O(polylog(n, m))
time, which is dominated by O(n + m). O

°If we do the math, and say m, n > 10, then log, M < 4(log, m + log, n). Now, just for perspective, if we were
looking for a n = 1024-bit phrase in Wikipedia, this means the prime p is only 4(log, 2*® +log, 2'°) < 192 bits long.

Exercises: Fingerprinting

General alphabets For simplicity, we looked at the case where ~ = {0,1}. The Karp-Rabin
algorithm generalizes naturally to larger alphabets. Instead of treating the input as a number
in binary, treat it as base-|X|. For example, if the text contains only lower-case English words,
we would use base-26. The formula for rolling the hash still works, except we replace 2 with |X|,
and the range {1,..., M} from which we should select our prime becomes slightly larger.

Problem 1. Suppose we use an alphabet 3 which has size |X| for Karp-Rabin. What should we
use as our new value of M, and how does this affect the number of bits required to store the
prime p?

Other pattern matching algorithms and problems Though there are many algorithms for
pattern matching, the advantage of the Karp-Rabin approach is not only the simplicity, but
also the extensibility. You can, for example, solve the following 2-dimensional problem using
the same idea.

Problem 2. Given a (m; x m,)-bit rectangular text T, and a (n; x n,)-bit pattern P (where n; <
m;), find all occurrences of P inside T. Show that you can do this in O(m;m,) time, where
we assume that you can do modular arithmetic with integers of value at most poly(m; m,) in
constant time.

	How to Pick a Random Prime
	How Many Primes?
	Tighter Bounds

	The String Equality Problem
	Communication cost
	Reducing the Error Probability

	The Karp-Rabin Algorithm (the ``Fingerprint'' method)
	The Karp-Rabin Idea: ``Rolling the hash''
	The pattern matching algorithm

	Exercises: Fingerprinting

