
15-451: Algorithm Design and Analysis, Carnegie Mellon University

Integer sorting

Last lecture we saw a general lower bound which says that any comparison model sorting algo-
rithm costs at leastΩ(n log n ) in the worst case. In this lecture we will derive sorting algorithms
that run in O (n ) cost! The catch is that to beat the comparison model lower bound we must of
course leave the comparison model behind and explore other models of computation. Specif-
ically, we will be looking at the problem of sorting integers, which gives us more power then
the comparison model since we can use properties of integers to help us sort them faster. We
will show two algorithms, Counting Sort and Radix Sort, which are capable of sorting integers
in linear time, provided that those integers are not too large.

Objectives of this lecture

In this lecture, we want to:

- See the Word RAM model of computation for integer (non-comparison) algorithms

- Learn about the counting sort algorithm for sorting (small) integers

- Learn about the radix sort algorithm for sorting (slightly bigger) integers

Recommended study resources

- CLRS, Introduction to Algorithms, Chapter 8: Sorting in Linear Time
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1 Models of computation for integers
In the first two lectures we have predominantly concerned ourselves with algorithms in the
comparison model of computation, where the input to our algorithms consisted of an array of
n comparable elements. In this model we didn’t have any other information available to us
about the elements. Were they integers, numbers, strings, who knows? This made the model
very general since we could derive algorithms for sorting and selection that effectively work on
any type because absolutely no assumptions about the type were made, only that they were
comparable, which is essentially required by the definition of sorting!

Last lecture we saw a very cool and fundamental result which is that in the comparison model,
sorting can not be done in less than Ω(n log n ) cost. We proved that it was mathematically im-
possible to invent a sorting algorithm that runs faster than this. Today, we want to invent some
sorting algorithms than run in O (n ) cost! To do so without contradicting ourselves we are going
to have to leave the comparison model behind and explore models of computation that give us
more power. Specifically, we are going to work on the problem of sorting integers, which means
that unlike in the comparison model where all we could do was compare two elements, we will
now gain the power to do things to the input elements like add them, divide them, use them
as indices into arrays, etc. These new found powers, and in particular the last one (using the
items as indices) will be the tools to beating the comparison model. Our model of computation
for today (and implicitly for much of the rest of the course) is the word RAM model.

1.1 TheWord RAMmodel of computation

Definition: Word RAM model

In the word RAM model:

- We have unlimited constant-time addressable memory (called “registers”),

- Each register can store a w -bit integer (called a “word”),

- Reading/writing, arithmetic, logic, bitwise operations on a constant number of words
takes constant time,

- With input size n , we need w ≥ log n .

The final assumption is needed because if our input contains n words, then to be capable of
even reading the contents of the input, we are surely going to need to be able to write down
the integer n as an index, and that requires log n bits. Since the word size is w , the maximum
integer we can store in a single word 2w −1.

Note that unlike some of our previous models such as the comparison model which had con-
crete costs, e.g., exactly 1 per comparison, in the word RAM we only care about asymptotic
costs, so we ignore constant factors and just say that operations on a constant number of words
takes constant time. This model is essentially just a more formal version of what you are prob-
ably used to from your previous classes when you analyzed an algorithm by counting "instruc-
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tions". The only subtle part is the restriction on the word size w and the assumption that only
operations on w -bit integers take constant time. Most of the time this is of no consequence,
but there are some situations where it matters.

The importance of the word size Consider for example an algorithm that takes n integers
as inputs each of which is written with w bits, and computes their product. How does such
an algorithm work and what is its runtime? A “count the instructions” analysis would suggest
that it just multiplies all the numbers together and takes O (n ) time!. However, remember that
for n integers each w bits, their product is an integer containing n w bits, which requires n
registers to store! Computing this product would therefore take much more than Θ(n ) time
since multiplying a super-constant number of integers can not be done in a single instruction
and would instead require an algorithm for multiplying large integers1.

This might seem odd at first but this model is really trying to help us match the behavior that
such an algorithm would have on a real computer! Almost every modern processor operates on
64-bit words, such that all arithmetic, bitwise, comaprison operations, etc., can be done with
a single machine instruction. What would happen if you tried to implement an algorithm that
multiplies n integers on a real computer? In most languages other than Python, you will quickly
find that the result will overflow, so you will just get a wrong answer (most likely you’ll get the
answer modulo 264 or something similar.) In Python you will find that you do in fact get the
right answer, but the computation will become very slow! Under the hood Python is actually
happy to represent large numbers for you by decomposing them into an array of word-sized
integers. Doing arithmetic on these big integers takes more than constant time. Python uses
an algorithm called Karatsuba multiplcation for multiplying these big integers, which runs in
O (d log2 3)≈O (d 1.58) operations for d -digit numbers.

But what if... we ignore the word size An alternative model is the unit-cost RAM model which
does not place any restriction on the size of the integers. In this model we just say that all
arithmetic operations on integers takes constant time regardless of how many bits it takes to
represent them. This might seem like an unimportant and pedantic difference, but it turns out
that this assumption allows you to implement some wild and crazy algorithms, such as being
able to sort n integers in constant time!2 Perhaps even more ludicrous, a RAM with unlimited
precision (no bound on w ) can solve PSPACE-Complete problems in polynomial time!3

1.2 Beating the comparisonmodel
To beat the comparison model, we have to advantage of some power that it doesn’t have. The
major limitation of the comparison model is that every operation we pay for (a comparison)
can only result in a binary outcome. This is fundamentally why our information theoretic lower
bounds gave us log2 # outputs, because the best we could do was double/halve the possible
outcomes each time we paid a cost of one. The source of untapped power of the word RAM is
that we can use our input elements (integers) as indices into arrays! That is, if I have an array

1We might see an algorithm for this later in the course. It takesΘ(d log d ) instructions to multiply d -digit integers!
2Appendix A of Computing with arbitrary and random numbers, Michael Brand’s PhD thesis, Monash University.
3See A characterization of the class of functions computable in polynomial time on Random Access Machines
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of length n and some integer from 1 to n (or 0 to n − 1 if zero-indexed), then I can access the
value of the array in constant time, but depending on the value of the integer, there are now n
possible outcomes, which is far more than the two outcomes of the comparison model!

Warmup example: constant-time static search Before we dive into sorting, lets demonstrate
how the word RAM has more power than the comparison model. The same ideas will be used
momentarily in our sorting algorithms. Consider the simpler problem of static searching, i.e.,
outputting the position of a given element in a given array if it exists, where arbitrary prepro-
cessing is allowed. By arbitrary preprocessing, we mean that you can, for example, sort the
elements or arrange them into a binary search tree, all for free to make the queries faster to
answer. There are n + 1 possible outcomes (each position and “it doesn’t exist”), so an infor-
mation theoretic lower bound in the comparison model immediately tells us that we can’t do
better thanΩ(log n ) cost. This tells us that binary search (on a sorted array) and balanced binary
search trees are asymptotically optimal in the comparison model as they match this bound.

But what could we do with the power of the word RAM when our elements are word-size inte-
gers? Given an array a1, . . . , an of n integers which are in the range {0, 1, . . . , u−1}, where u ≤ 2w

is the size of the universe of inputs we are considering, we could create an array T of size u , one
slot for every possible value, then store T [ai ]← i , i.e., store a lookup table of positions based on
the values. To answer a search query for a value x we simply check T [x ] and output the index if
there is one stored there. This solves the problem of static searching in constant time! We have
defeated the confines of the comparison model, at the expense of making the assumption that
our keys are integers rather than arbitrary comparable things. Furthermore this solution makes
the assumption that u is a reasonable amount of space to use. If the universe of keys is very
large, this solution is horribly space inefficient. That problem can be effectively eliminated by
the use of hashing which we will study in great detail in the next few lectures!

2 Sorting small integers: Counting Sort
Lets start by setting up the problem precisely.

Problem: Integer sorting

The integer sorting problem consists of an input array of n elements a1, a2, . . . , an , each
identified by a (not necessarily unique) integer key called key(ai ). The goal is to output
an array containing a permutation of the input aπ1

, . . . , aπn
such that

key(aπ1
)≤ key(aπ2

)≤ . . . key(aπn
).

An important feature of the problem is that we are not just assuming that the input is an array of
nothing but integers. Rather, the input is an array of elements with associated integer keys. This
of great practical importance since in real-life you are rarely going to want to sort an array that
contains literally nothing but integers, but likely you want to sort some data by some integer
property. For example, you may have a spreadsheet and you want to sort the rows by one of the
columns which contains an integer value. When you sort the rows, you of course do not only
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want to sort that one column containing the integer, but you want the entire row attached to
that integer to come along for the ride, otherwise the spreadsheet would be messed up and the
rows would no longer contain the right values.

Stability Note that we allow there to be duplicate keys among the elements. Recall from your
previous classes that a sorting algorithm is called stable if it preserves the relative order of du-
plicate keys. That is, if key(ai ) = key(a j ) and i < j , then ai appears before a j in the output. It
will be of importance to us in this lecture to design algorithms that are stable.

2.1 The algorithm
When sorting an array of elements, the main question we have for each element is “where
should it go?” In the comparison model when dealing with black-box comparable things, the
only way we can answer this question is by comparing the element to (often many) other ele-
ments. However, when our keys are integers, we already have a pretty good idea of where they
go. Element x comes after element x −1 and before element x +1 (if they exist).

Warm-up problem: Sorting distinct keys {1,2, . . . ,n } As a warm up, lets say that the input
only contains distinct keys in the range {1, 2, . . . , n}, which means the keys are exactly the set
{1, 2, . . . , n}. In this case, we could sort them by simply creating an output array S of size n , then
for each element ai , just place ai in S [key(ai )] directly!

Warmer-up: Sorting distinct keys in {0,1, . . . , u −1} If we knew the input contained only dis-
tinct keys in the range {0, 1, . . . , u−1}, we could sort them by creating an array S of size u instead
of size n , and then similarly placing element ai in slot S [key(ai )], then lastly filtering out the
empty slots with a second pass over the output.

Counting Sort In general we might have duplicate keys, so we can fix this by instead storing
a list of elements with key x at slot x . This gives us our first integer sorting algorithm.

Algorithm: Counting Sort

Suppose the input contains n elements a1, . . . , an whose keys are integers in the range
0, 1, . . . , u −1. The key function takes an element and returns the associated integer key.

function CountingSort(a : array, key : element → int) {
let L be an array of u empty lists
for each element x in a do {
L[key(x)].append(x)

}
let out = empty list
for each integer k in range(0, u) do {
out.extend(L[k])

}
return out

}
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The correctness follows from the fact that the elements are stored in the array in key order.

Theorem: Complexity of Counting Sort

On n elements with integer keys in {0, 1, . . . , u −1}, Counting Sort runs in O (n +u ) time.

Proof. The algorithm just makes one pass over the input of length n , then one pass over the
universe of keys u , and builds the output array of length n , so in total, we have an algorithm
that runs in O (n +u ) time

Finally, we should make the observation that Counting Sort is stable since it appends elements
to the lists in order. This will be very important in the last section.

We wanted linear-time sorting, right? Our goal was to design an algorithm that sorts faster
than a comparison sorting algorithm which we know can run inΘ(n log n ) time. Counting Sort
achieves a runtime of O (n+u ), so how exactly does that stack up? Its not quite directly compa-
rable since it depends on the size of u . Since our goal is to achieve linear-time sorting, we will
describe the algorithm in terms of which inputs allow it to achieve this goal. So, in this case,
as long as u = O (n ), Counting Sort runs in linear time! In other words, if our integers have at
most log n + c bits for any constant c , Counting Sort is linear time. This is not too bad. If we
have a data set of n elements and each has an index in 1 . . . n or even 1 . . . c n for some constant
n , then we can sort on that index in linear time!

Our next goal will be to improve this and find an algorithm that can sort even larger integers
still in linear time.

3 A side quest: Tuple sorting
A useful stepping stone towards our last algorithm will be a concept sometimes called tuple
sorting. The problem is this:

Problem: Tuple sorting

Given an array of n elements where each element has a key which are equal-length tu-
ples (k1, k2, . . . , kd ), we want to sort the array lexicographically by key. That is, the array
should be sorted by the first element of the tuples, with ties broken by the second, ties
on those broken by the third, and so.

We will describe three algorithms for this problem! All of them will work by using another or-
dinary sorting algorithm but in different ways.

Comparison tuple sorting The most straightforward (though not particularly useful for this
lecture) algorithm for tuple sorting is to just apply any of your favourite comparison sorting
algorithms (merge sort, quicksort, heapsort) that run in O (n log n ) cost, comparing the tuples
element by element. Note that comparing a tuple does not take constant time, so we need to
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multiply the cost (number of comparisons) by the length of the tuples, i.e., d . This will give us
an O (d n log n ) algorithm. This works fine in the comparison model, but it doesn’t generalize
very well outside the comparison model, e.g., to tuples of integers and integer sorting.

The remaining two algorithms, instead of only performing one sort, will sort multiple times to
achieve the same effect! This will also make them more generalizable and applicable outside
the comparison model since each sort will only apply to one element of the tuple.

3.1 Top-down tuple sorting
A natural algorithm for tuple sorting is to essentially follow the definition. First, we can sort,
using any sorting algorithm we like, using the first tuple element as the key. The array is now
sorted correctly except that keys with equal first tuple elements are not tie-broken by the second
tuple element yet. To resolve that, recursively sort each subarray of equal first elements, this
time using the second tuple element as the key, and so on.

As an example, consider sorting a set of dates which are represented as (Year, Month, Day)
tuples. A top-down tuple sort will sort them by year, then recursively sort the dates that have
equal years by their month, and then recursively sort the dates with equal years and months.

SortedSortedSorted

2024, Feb, 16
2024, Feb, 18
2023, Feb, 06
2024, Jan, 16
2023, Jan, 19
2023, Jan, 17
2024, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Feb, 15
2024, Jan, 19
2024, Jan, 18

2023, Feb, 06
2023, Jan, 19
2023, Jan, 17
2023, Feb, 07
2023, Feb, 19
2024, Feb, 16
2024, Feb, 18
2024, Jan, 16
2024, Feb, 06
2024, Feb, 15
2024, Jan, 19
2024, Jan, 18

2023, Jan, 19
2023, Jan, 17
2023, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Jan, 16
2024, Jan, 19
2024, Jan, 18
2024, Feb, 16
2024, Feb, 18
2024, Feb, 06
2024, Feb, 15

2023, Jan, 17
2023, Jan, 19
2023, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Jan, 16
2024, Jan, 18
2024, Jan, 19
2024, Feb, 06
2024, Feb, 15
2024, Feb, 16
2024, Feb, 18

The nice thing about this algorithm is that it can be applied using any sorting algorithm to
perform each step, as long as that sorting algorithm can sort the individual elements of the
tuples, e.g., we could use counting sort if every element of the tuples are integers! Whether this
is efficient depends on the value of u .

3.2 Bottom-up tuple sorting
Like most recursive algorithms, we can also find a non-recursive alternative. What if instead of
recursively sorting each subarray of equal tuple elements, we just sorted the entire array one
tuple element at a time? Say we first sort the entire array using the first tuple element as the
key, then the second, and so on. What would happen? Well, the array wouldn’t actually be in
sorted order because it would be sorted by the final tuple elements, not the first!

However, this algorithm almost works, with just one minor adjustment. The tuple element that
we sort with respect to last is the one that ends up sorted, so we should actually sort in reverse
order of the tuple elements, i.e., sort with respect to the final tuple element, then the second
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last, and so on until we sort with respect to the first tuple element. This makes intuitive sense
because the final sort is going to dictate that the elements are ordered by the first tuple element,
which is exactly what we want.

Now the important observation: as long as the sorting algorithm that we use at each step is
stable, we will end up with the correct answer. This is because before we sort on the first tuple
element, the array is already sorted correctly with respect to the second tuple element because
of the previous sort, so by using a stable sort, all ties between equal first tuple elements will be
correctly tie-broken on the second tuple element! Applying this reasoning inductively should
convince us that the array will be correctly sorted lexicographically with respect to the tuples!

Lets see the date sorting example again, this time using the bottom-up approach. Notice that
the algorithm pretty much does the same thing but in reverse! First it sorts the days correctly,
then it sorts the months so that the (Month, Day) pairs are in sorted order, then finally it sorts
the years to bring everything into the correct order.

SortedSorted

2023, Feb, 06
2024, Feb, 06
2023, Feb, 07
2024, Feb, 15
2024, Feb, 16
2024, Jan, 16
2023, Jan, 17
2024, Feb, 18
2024, Jan, 18
2023, Jan, 19
2023, Feb, 19
2024, Jan, 19

2024, Feb, 16
2024, Feb, 18
2023, Feb, 06
2024, Jan, 16
2023, Jan, 19
2023, Jan, 17
2024, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Feb, 15
2024, Jan, 19
2024, Jan, 18

2024, Jan, 16
2023, Jan, 17
2024, Jan, 18
2023, Jan, 19
2024, Jan, 19
2023, Feb, 06
2024, Feb, 06
2023, Feb, 07
2024, Feb, 15
2024, Feb, 16
2024, Feb, 18
2023, Feb, 19

Sorted

2023, Jan, 17
2023, Jan, 19
2023, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Jan, 16
2024, Jan, 18
2024, Jan, 19
2024, Feb, 06
2024, Feb, 15
2024, Feb, 16
2024, Feb, 18

The key difference is that unlike the top-down approach, each round sorts the whole array,
rather than recursively subdividing the array into smaller pieces that are sorted separately.

4 Sorting bigger integers: Radix Sort
We now have the ingredients to derive our last and best integer sorting algorithm. Counting
Sort is great for sorting small integers but falls over once u becomes too large. However, what if
we were to use tuple sorting instead on a tuple of small integers? As long as the tuple elements
are small that sounds like it might be efficient! So the question is how can we convert a bigger
integer into a tuple of smaller integers such that sorting on the tuples is equivalent to sorting
on the original values? It turns out that we definitely already know the answer to this question,
because it is just how we write down numbers every day! We can split numbers into their digits!

Key Idea: Integer sorting is tuple sorting by digits

Sorting integers is equivalent to tuple-sorting them by their digits! If a number has a
greater first digit than another, then it is greater. If two numbers have equal first digits,
then they are tie-broken by their second digit and so on!
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Here’s the idea in picture form, just like bottom-up tuple sorting from a moment ago. We first
sort the numbers by the least-significant digit, then by the second-least, and so on, until finally
sorting by the most significant digit. This algorithm is called bottom-up Radix Sort or Least-
Significant-Digit (LSD) Radix Sort, since it sorts in order from least to most significant.

SortedSortedSorted

2 3 1 1
1 2 2 1
2 1 2 1
1 1 4 2
4 1 4 2
3 1 3 3
1 4 2 3
1 1 3 3
2 3 1 3
4 4 2 3
4 4 2 3
3 3 3 4

3 1 3 3
1 4 2 3
2 3 1 1
3 3 3 4
1 1 3 3
1 1 4 2
2 3 1 3
4 4 2 3
1 2 2 1
4 1 4 2
4 4 2 3
2 1 2 1

Sorted

2 3 1 1
2 3 1 3
1 2 2 1
2 1 2 1
1 4 2 3
4 4 2 3
4 4 2 3
3 1 3 3
1 1 3 3
3 3 3 4
1 1 4 2
4 1 4 2

2 1 2 1
3 1 3 3
1 1 3 3
1 1 4 2
4 1 4 2
1 2 2 1
2 3 1 1
2 3 1 3
3 3 3 4
1 4 2 3
4 4 2 3
4 4 2 3

1 1 3 3
1 1 4 2
1 2 2 1
1 4 2 3
2 1 2 1
2 3 1 1
2 3 1 3
3 1 3 3
3 3 3 4
4 1 4 2
4 4 2 3
4 4 2 3

Since it is stable and the digits are small integers, we use Counting Sort for each iteration!

Algorithm: LSD Radix Sort

Suppose the input contains n elements a1, . . . , an whose keys are integers withnum_digits
digits, and we have a function Digit(x, i) which extracts the i th digit of x .

function RadixSort(a : array, key : element → int) {
let out = copy of a
for each i in range(0, num_digits) do {
out = CountingSort(out, key = x → Digit(key(x), num_digits − i))

}
return out

}

We could similarly implement a recursive top-down /MSD Radix Sort as well, but we will stick
with this for now since it allows us to make an optimization to improve the complexity in just
a moment. In practice it would be more efficient to allocate the out array just once and reuse
it (e.g., swapping it with a each iteration) for every iteration of Counting Sort rather than con-
stantly allocating new arrays each time.

Analysis The last step is to analyze the algorithm. How fast is it? Well, it depends on the
number of digits, right? If our numbers are again from a universe {0, 1, . . . , u−1}, then they have
d = logb u digits when written in base b . Each digit will be a smaller integer from {0, 1, . . . , b−1}.
The algorithm performs d iterations, each of which performs a counting sort. Since the digits
are in base b , Counting Sort takes O (n + b ) time. Therefore the total time for Radix Sort is

O ((n + b ) logb u ).
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Initially this doesn’t look that great. If we pick any constant base b , then even if u =O (n ), the
runtime becomes O (n log n ), which is the same as comparison sorting and actually worse than
Counting Sort! How can we make this better? Well, the higher the base, the fewer iterations the
algorithm needs, so lets make it even higher! As long as we do not cause the Counting Sort to
take more than linear time, we should be fine, so since the Counting Sort takes O (n + b ) time,
our base can go up to n without trouble! Intuitively this makes sense because Counting Sort
was good until the universe became bigger than linear in n , so we should pick that as the base
for Radix Sort to get the most value out of each iteration of Counting Sort.

Theorem: Complexity of Radix Sort

On n elements with integer keys in {0, 1, . . . , u −1}, Radix Sort runs in O (n logn u ) time.

This is a little hard to interpret and its not immediately obvious whether this is good, but the
claim is that this is now good and can sort much larger integers than Counting Sort could!

Corollary: Radix Sort can sort bigger integers

Radix Sort can sort n elements with integers keys in the range {0, 1, . . . , O (n c )} for any
constant c , i.e., any integer keys that are polynomial size in n , in linear time.

Proof. Let u =O (n c ), so lgn u =O (lgn n c ) =O (c ) =O (1) and hence the complexity is O (n ).

Wow, that’s a big improvement! We have gone from being able to only sort integer keys that
were linear in n , i.e., keys up to O (n ), which is quite restrictive, to being able to sort any keys
that are polynomial in n , i.e., keys up to O (n c ) for any constant c .

Remark: Integer sorting is still an open problem!

One cool thing about comparison sorting is that it is (asymptotically) a solved prob-
lem. We know that Ω(n log n ) is a lower bound, but we also have algorithms that run in
O (n log n ) cost, so those algorithms are optimal up to constant factors.

The same however is not true for integer sorting! The algorithms we learned today
can sort integers that are up to polynomial size in n , but what about sorting integers
without any restriction on the size? This is still an open research problem. The best
algorithms that have been discovered run in O (n log log n ) time (deterministically), or
in O (n
p

log log n ) expected time. We don’t however know any lower bound for integer
sorting other than the trivial Ω(n ) lower bound! So, we still don’t know whether there
exists a linear-time sorting algorithm for integers that works regardless of their size, or
whether there is a lower bound that shows that this is not possible. Either could be true!
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Exercises: Integer Sorting

Problem 1. We wrote pseudocode that performs a bottom-up (LSD) Radix Sort. Write similar
pseudocode for a top-down Most-Significant-Digit (MSD) Radix Sort instead.

Problem 2. What is the complexity of a recursive MSD Radix Sort? For what base/digit counts
is it faster/slower/the same cost as LSD Radix Sort?

Problem 3. Given n integers a1, a2, . . . , an in {1, 2, 3, . . . , n 2}, give an algorithm that finds indices
i ̸= j for which |ai −a j | is minimized, i.e., find the closest pair of integers. How would you solve
this problem with or without what you learned in this lecture? How does the cost differ?
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