15-451: Algorithm Design and Analysis, Carnegie Mellon University

Concrete models and lower bounds

In this lecture, we will examine some simple, concrete models of computation, each with a
precise definition of what counts as a step, and try to get tight upper and lower bounds for a
number of problems. Specific models and problems examined in this lecture include:

- The number of comparisons needed to find the largest item in an array,

The number of comparisons needed to find the second-largest item in an array;,

- The number of comparisons needed to sort an array;,

The number of swaps needed to sort an array

Objectives of this lecture

In this lecture, we want to:
- Understand some concrete models of computation (e.g., the comparison model)
- Understand the definition of a lower bound in a specific model

- See some examples of how to prove lower bounds in specific models, particularly for
sorting and selection problems

Recommended study resources

- CLRS, Introduction to Algorithms, Chapter 8.1, Lower bounds for sorting

- DPV, Algorithms, Chapter 2.3, Mergesort (Page 59)

1 Terminology: Upper Bounds and Lower Bounds

In this lecture, we will look at (worst-case) upper and lower bounds for a number of problems
in several different concrete models. Each model will specify exactly what operations may be
performed on the input, and how much they cost. Each model will have some operations that
cost a certain amount (like performing a comparison, or swapping a pair of elements), some
that are free, and some that are not allowed at all.

Definition: Upper bound

By an upper bound of U, for some problem and some length n, we mean that there exists
an algorithm A that for every input x of length n costs at most U,,.

A lower bound for some problem and some length #n, is obtained by the negation of an upper
bound for that n. It says that some upper bound is not possible (for that value of n). If we
take the above statement (in italics) and negate it, we get the following. for every algorithm A
there exists an input x of length n such that A costs more than U, on input x. Rephrasing:

Definition: Lower bound

By a lower bound of L,, for some problem and some length n, we mean that for any
algorithm A there exists an input x of length n on which A costs at least L,, steps.

These were definitions for a single value of n. Now a function f : N — R is an upper bound for
a problem if f(n)is an upper bound for this problem for every n € N. And a function g(-) is an
lower bound for a problem if g(n) is a lower bound for this problem for every n.

The reason for this terminology is that if we think of our goal as being to understand the “true
complexity” of each problem, measured in terms of the best possible worst-case guarantee
achievable by any algorithm, then an upper bound of f(7) and lower bound of g(n) means
that the true complexity is somewhere between g(n) and f(n).

Finally, what is the cost of an algorithm? As we said before, that depends on the particular
model of computation we're using. We will consider different models below, and show each
has their own upper and lower bounds.

One natural model for examining problems like sorting and selection is the comparison model
from last lecture, which we recall as follows.

Definition: Comparison Model

In the comparison model, we have an input consisting of n elements in some initial or-
der. An algorithm may compare two elements (asking is a; < a;?) at a cost of 1. Moving
the items, copying them, swapping them, etc., is free. No other operations on the items
are allowed (using them as indices, adding them, hashing them, etc).

2 Selection in the comparison model

2.1 Finding the maximum of n elements

How many comparisons are necessary and sufficient to find the maximum of n elements, in
the comparison model of computation?

Claim: Upper bound on select-max in the comparison model

n—1 comparisons are sufficient to find the maximum of n elements.

Proof. Just scan left to right, keeping track of the largest element so far. This makes at most
n—1 comparisons. O

Now, let’s try for a lower bound. One simple lower bound is that we have to look at all the
elements (else the one not looked at may be larger than all the ones we look at). But looking at
all n elements could be done using n/2 comparisons, so this is not tight. In fact, we can give a
better lower bound:

Claim: Lower bound on select-max in the comparison model

n —1 comparisons are necessary for any deterministic algorithm in the worst-case to
find the maximum of n elements.

Proof. The key claim is that every item that is not the maximum must lose at least one compar-
ison (by lose, we mean it is compared to another element and is the lesser of the two). Why is
this true? Suppose there were two elements a; and a; and neither lost a comparison. Suppose
without loss of generality that a; > a;. If the algorithm outputs a; it is incorrect. Otherwise, if
it outputs a; then we could construct another input that is the same except that a; is now the
maximum (we don’t change the relative order of any other elements). On this new input, none
of the results of any comparisons change since a; never lost any comparisons in the first place,
so the algorithm, being deterministic, must output the same answer. However, the algorithm is
now incorrect. Therefore there must be n —1 elements that lose a comparison, and since only
one element loses per comparison, a correct algorithm must perform n —1 comparisons. [

Since the upper and lower bounds are equal, the bound of n —1 is tight.

2.2 Finding the second-largest of n elements

How many comparisons are necessary (lower bound) and sufficient (upper bound) to find the
second largest of n elements? Again, let us assume that all elements are distinct.

Claim: Lower bound on select-second-max in the comparison model

n—1 comparisons are needed in the worst-case to find the second-largest of n elements.

Proof. The same argument used in the lower bound for finding the maximum still holds. O

Let us now work on finding an upper bound. Here is a simple one to start with.

Claim: Upper bound #1 on select-second-max in the comparison model

2n—3 comparisons are sufficient to find the second-largest of n elements.

Proof. Justfind the largest using n—1 comparisons, and then the largest of the remainder using
n—2 comparisons, for a total of 2n —3 comparisons. O

We now have a gap: n—1 versus 2n — 3. It is not a huge gap: both are ©(n), but remember
today’s theme is tight bounds. So, which do you think is closer to the truth? It turns out, we can
reduce the upper bound quite a bit:

Claim: Upper bound #2 on select-second-max in the comparison model

n +1lgn—2 comparisons are sufficient to find the second-largest of n elements.

Proof. As afirst step, let’s find the maximum element using n—1 comparisons, but in a tennis-
tournament or playoff structure. That is, we group elements into pairs, finding the maximum
in each pair, and recurse on the maxima. E.g.,

6 4 2 1 8 7 3 5
Round 1 \6/ \2/ \8/ \5/
Round 2 \6 / \8/
Round 3 \ 8/

Now, given just what we know from comparisons so far, what can we say about possible lo-
cations for the second-highest number (i.e., the second-best player)? The answer is that the
second-best must have been directly compared to the best, and lost.! This means there are
only lg n possibilities for the second-highest number, and we can find the maximum of them
making only Ig(7n)— 1 more comparisons. 0

At this point, we have a lower bound of n —1 and an upper bound of n +1g(n)—2, so they are
nearly tight. It turns out that, in fact, the lower bound can be improved to exactly meet the
upper bound, but the proofis rather complicated so we won't do it for now.

!Apparently the first person to have pointed this out was Charles Dodgson (better known as Lewis Carroll!),
writing about the proper way to award prizes in lawn tennis tournaments.

2.3 An alternate technique: decision trees

Our lower bound arguments so far have been based on an adversary technique. We argued
that if an algorithm makes too few comparisons, then we can concoct an input such that it will
produce the wrong answer. There are many techniques that can be used to prove lower bounds.
Another powerful one are decision trees.

A decision tree is a binary tree that represents the behavior of a specific algorithm based on
the outcomes of each comparison it makes. Specifically, each internal node corresponds to a
comparison such that the left subtree corresponds to the outcome of the comparison being
true and the right subtree corresponds to it being false. At a leaf node the algorithm performs
no more comparisons and thus is finished and produces an output.

Remark: Decision trees are for particular algorithms

It is very important to remember that a decision tree encodes a specific algorithm. Dif-
ferent algorithms will have different decision trees. The decision tree does not however
depend on the input to the algorithm, it encodes its behavior on any possible input. In
some sense, you can think of the decision tree as a flow chart that tells you exactly what

the algorithm does based on the results of the comparisons.
. v

It turns out that decision trees can be a useful tool for analyzing lower bounds. Keeping in
mind that a decision tree always represents a particular algorithm, to prove a lower bound, we
must argue some property about the structure of any possible decision tree for the problem (if
we make an argument about a specific decision tree, that is just like arguing about a specific
algorithm, which does not help us derive a lower bound for the problem).

Since we are interested in the worst-case number of comparisons, we should observe that the
number of comparisons performed by the algorithm on a particular input is the depth of the
leaf node corresponding to that output. Therefore the worst-case cost (number of compar-
isons) of the algorithm corresponds exactly to the longest root-to-leaf path, i.e., the height of
the tree. Therefore, if we can successfully argue about the height of any possible decision tree
for a problem, we have an argument for a lower bound!

Here is a decision tree for some arbitrary algorithm that solves the select-max problem.

FALSE

{ Output 3] { Output 2 }

You can follow it just like a flowchart to determine for any input what index the algorithm will
output! We can also use it to argue about lower bounds.

Proof of select-max lower bound via decision trees. Atthe rootnode of any decision tree for the
select-max problem there are n possible outputs (positions 1...n). For each comparison, ex-
actly one element loses, and hence the set of possible outputs at each node is one fewer than
at its parent node. Therefore all of the leaves of this decision tree have depth n —1 and hence
n—1 comparisons are required to determine the maximum element. O

3 Sorting in the comparison model

For the problem of sorting in the comparison model, the input is an array a = [a;, a4y, ...,a,],
and the output is a permutation of the input 7(a) = [@x(1), Gr(2), .- -, Ar(n)] in Which the elements
are in increasing order.

Remark: Correctly defining the “output” of an algorithm

A surprisingly subtle aspect of proving lower bounds, and the source of many buggy or
incorrect lower bound proofs is the seemingly simple step of defining what the output
of the algorithm is supposed to be.

Remember, importantly, that the comparison model has no concept of “values” of the
input elements. The only thing that an algorithms knows about them are the results of
the comparisons. Therefore when a comparison-model sorting algorithm produces an
output, it doesn’t know the values of the elements, it only knows what order it rearranged
them into - so its output can only be described as a permutation of the input elements.
Many of our lower bound proofs will be combinatoric in nature, where we will count the
number of required outputs that an algorithm could need to produce.

For example, suppose we ask an algorithm to sort [c,a, b,d] and [b,d,a,c]. Both of
these will become [a, b, ¢, d] when sorted, so does this mean they were the same out-
put? No! The former is sorted by outputting [a,, as, a;, a,], and the latter is sorted by
outputting [as, a;, a4, a,], so these are not the same output.

InPUt: [alf a,,as, a4—] Inlet: [ali a,,as, a4—]

OUtPUt: [az, s, aq, a4—] OUtPUt: [a31 Aq, Ay, aZ]

On the other hand, suppose we ask to sortboth[c,a, b,d]and[m, d, e, z]. These will sort
to[a, b,c,d]and[d, e, m, z], which are both the permutation [a,, a3, a;, a,]. So these are
in fact the same output, because their elements are in the same relative permuted order,
and the actions taken by a deterministic sorting algorithm on them would therefore be

100% identical (the algorithm could not tell the difference between those two inputs.)

Inpl‘It: [all a,,as, a4-] InPUt: [a'lr a,, as, a4-]
OUtPUt: [aZI as, aq, a4-] OUtPUt: [aZI as,a,, a4-]

When thinking about comparison-model lower bound proofs, be sure to keep this im-
portant distinction in mind - values do not matter at all because the algorithm does not

know them. It can only deduce/know information about relative order!
. y

Theorem 1: Lower bound for sorting in the comparison model

Any deterministic comparison-based sorting algorithm must perform atleastlg(n!) com-
parisons to sort n distinct elements in the worst case.¢

“As is common in CS, we will use “Ig” to mean “log,”.

. v

In other words, for any deterministic comparison-based sorting algorithm .</, for all n > 2 there
exists an input I of size n such that ./ makes at least 1g(n!) = Q(nlogn) comparisons to sort /.

To prove this theorem, we cannot assume the sorting algorithm is going to necessarily choose
a pivot as in Quicksort, or split the input as in Mergesort — we need to somehow analyze any
possible (comparison-based) algorithm that might exist. This is a difficult task, and its not at all
obvious how to even begin to do something like this! We now present the proof, which uses a
very nice information-theoretic argument. (This proofis deceptively short: it’s worth thinking
through each line and each assertion.)

Proof of Theorem 1. First remember that we are dealing with deterministic algorithms here.
Since the algorithm is deterministic, the first comparison it makes is always the same. De-
pending on the result of that comparison, the algorithm could take different actions, however,
critically, the result of all the previous comparisons always determines which comparison
will be made next. Therefore for any given input to the algorithm, we could write down the se-
quence of results of the comparisons (e.g., True, False, True, True, False, ...) and this sequence
would entirely describe the behavior and hence the output of the algorithm on that input.

Now, in the comparison model, since values are unimportant and only order matters, there
are n! different possible input sequences that the algorithm needs to be capable of sorting cor-
rectly, one for each possible permutation of the elements. Furthermore, since the elements are
distinct, there is only a single correct sorted order, and therefore every input permutation has
aunique output permutation that correctly sorts it. So, for a comparison-based sorting algo-
rithm to be correct, it needs to be able to produce n! different possible output permutations,
because if there is an output it can not produce, then there is an input which it can not sort.

If the algorithm makes ¢ comparisons whose results are encoded by a sequence of binary out-
comes (True or False) by, b,,..., by, then since each comparison has only two possible out-
comes, the algorithm can only produce 2¢ different outputs. Since we argued that in order
to be correct the algorithm must be capable of producing n! different outputs, we need

2>n = (>lgn,

which proves the theorem. O

Key Idea: Information-theoretic lower bound

The above is often called an “information theoretic” argument because we are in essence
saying that we need at least 1g(M) =1g(n!) bits of information about the input before we
can correctly decide which of M outputs we need to produce. This technique general-
izes: If we have some problem with M different outputs the algorithm needs to be able

to produce, then in the comparison model we have a worst-case lower bound of Ilg M.
. v

What does Ig(n!) look like? We have:
Ig(n!)=1g(n)+lg(n—1)+1g(n—2)+...+1g(1) < nlg(n) = O(nlogn),
and
Ig(n!)=lg(n)+Ig(n—1)+1g(n—2)+...+1g(1) > (n/2)Ig(n/2) =QU(nlogn).

So, 1g(n!)=0O(nlog n). However, since today’s theme is tight bounds, let’s be a little more precise.
We can in particular use the fact that n! e [(n/e)", n"] to get:

nlgn—nlge < lIgn!) < nlgn
nlgn—1.443n < lgn!) < nlgn.

Since 1.433n is a low-order term, sometimes people will write this fact this as

Ig(n!)=(nlgn)(1—o0(1)),

meaning that the ratio between Ig(n!) and nlgn goes to 1 as n goes to infinity.

How Tight is this Bound? Assume 7 is a power of 2, can you think of an algorithm that makes
at most nlgn comparisons, and so is tight in the leading term? In fact, there are several algo-
rithms, including:

- Binary insertion sort. If we perform insertion-sort, using binary search to insert each new
element, then the number of comparisons made is at most Zzzz[lg k] < nlgn. Note that
insertion-sort spends a lot in moving items in the array to make room for each new element,
and so is not especially efficient if we count movement cost as well, but it does well in terms
of comparisons.

- Mergesort. Merging two lists of n/2 elements each requires at most n — 1 comparisons. So,
weget(n—1)+2(n/2—1)+4(n/4—1)+...+n/2(2—1)=nlgn—(n—1)< nlgn.

3.1 AnAdversary Argument

A slightly different lower bound argument comes from showing that if an algorithm makes “too
few” comparisons, then an adversary can fool it into giving the incorrect answer. Here is a
little example. We want to show that any deterministic sorting algorithm on 3 elements must
perform at least 3 comparisons in the worst case. (This result follows from the information
theoretic lower bound of [Ig3!] = 3, but let’s give a different proof.)

If the algorithm does fewer than two comparisons, some element has not been looked at, and
the algorithm must be incorrect. So after the first comparison, the three elements are w the
winner of the first query, ! the loser, and z the other guy. If the second query is between w and
z, the adversary replies w > z; if it is between / and z, the adversary replies ! < z. Note that in
either case, the algorithm must perform a third query to be able to sort correctly.

3.2 Extra example: Sorting with duplicates

The analysis of sorting with n distinct elements was surprisingly simple because we were able
to characterize all of the possible inputs as all n! permutations which all required a distinct
output, and therefore argue that any correct algorithm therefore must be able to produce n!
distinct outputs. Most of the time it will not be this simple and we will need to take some extra
steps. Here’s a problem to demonstrate:

Problem: Sorting with D distinct elements

Suppose you have an array of n elements a,, ..., a,, and a parameter D such that you are
guaranteed that there are at most D distinct elements in the array (where 1 < D < n.)

When D = n, itis the original sorting problem from before, which has alower bound of ©(n log nn),
so this generalizes the previous problem by allowing duplicates in a constrained way. For D =1,
the array would consist of copies of a single element, which could be sorted in zero compar-
isons since it would be already sorted. For D = 2, we could sort the array in linear cost by
scanning over the array and grouping the elements of the first value and second value. So it
appears that the problem is cheaper as D gets smaller which makes sense; the fewer distinct
elements, the more possible sorted orders there are so fewer outputs are required.

What makes this problem tricky is that it is very unclear how to count exactly how many re-
quired outputs there are. It is no longer true that each input element requires a distinct output;
for example, both the arrays [a, a, b] and [a, b, b] are sorted by the identity permutation (they
are already sorted). So it is not the case that we can just count the number of possible inputs
and assume that it is equal to the number of required outputs, since a single output could sort
multiple inputs. There are also multiple valid outputs for a single input since duplicates can be
interchanged without violating sorted order.

Finding a hard subset of inputs A powerful technique that we will use to overcome this issue
is to focus on a specific subset of inputs to the problem. If we find some family I of inputs and
prove a lower bound on the cost to solve any input from I, then of course that lower bound

also applies to solving the whole problem (all possible inputs). What properties do we want
this family to have? Ideally two things:

- Itneeds to require alot of outputs: The information-theoretic lower bound uses the number
of required outputs, so we need a subset that requires a lot, otherwise we will get a very weak
(low) lower bound.

- It needs to be simple enough to count: Since we are required to count the number of re-
quired outputs, our family of inputs should be simple enough that we can actually count
that number! If our construction is too complicated, it will be too hard, so we usually try to
construct something that is easy to describe and count with combinatorics tools that we have
(factorials, binomials, powers, etc).

Constructing a family with the distinctness property The vanilla sorting problem was nice
because every input required a distinct output, which made counting the number of outputs
equivalent to counting the number of inputs. A common technique is therefore to try to con-
struct our family of inputs so that it too has this property. We don't always have to do this, we
could instead construct a family of inputs and then try to reason about how many outputs sort
each input, and then divide the total number of outputs by that. For now, we will use the first
technique. An important fact to keep in mind is that a permutation of distinct elements always
has a unique inverse, i.e., it requires a distinct permutation to sort it. So, how can we generalize
that idea to arrays with duplicates? What if we just glue two permutations together?

12,..,0 | | 12,..,D |
3 3

In other words, we take the elements 1,..., D twice, then we randomly shuffle the first half and
the second half independently. This gives us an array consisting of two copies each of 1,..., D,
but with the extra property that there is only one 1 in the first half and one in the second half,
and so on for each element.

An important fact about this construction is that given two different arrays generated by this
process, the same output can not sort both of them. This is because if two elements on one
side were in different positions, then the output permutation would sort those elements into
the wrong order because they are unique!

Constructing our family of inputs Generalizing the above idea, given n and D, we can con-
struct a family of inputs by taking n/D independently shuffled permutations of 1...D and
concatenating them together (if D does not divide n, the last group might stop early and not
contain all of 1... D, that’s fine). By the reasoning above, every input in this family requires a
distinct output, i.e., no one output can correctly sort two of these inputs. So, the number of
requires outputs to sort everything in this set is equal to the number of inputs in this family!

It remains to just count how many inputs are in this family. In each contiguous chunk con-
taining 1... D, there are D! possible orders, and there are n/D chunks. So, the total number of

10

inputs in this family is
(D!)D.

Obtaining the lower bound Applying the information-theoretic lower bound, any algorithm
in the comparison model for solving this problem therefore requires

log, ((DY#) = %logZ(D!) — %@(D log D) =O(nlogD)

comparisons! This intuitively makes sense, since if D = n we get ©(nlogn) which we should,
since that is the problem from earlier of just sorting n distinct elements, and if D is smaller,
the cost goes down. For example, if D = 1, then log,(D) = 0 which is correct since it takes no
comparisons to sort an input consisting of entirely duplicates (it is already sorted).

As an exercise, try to come up with an algorithm that solves this problem in ©(n log D) compar-
isons, which proves that this bound is asymptotically tight.

4 Sortingin the exchange model

Consider a shelf containing n unordered books to be arranged alphabetically. In each step, we
can swap any pair of books we like. How many swaps do we need to sort all the books? Formally,
we are considering the problem of sorting in the exchange model.

Definition: The Exchange Model

In the exchange model, an input consists of an array of n items, and the only operation
allowed on the items is to swap a pair of them at a cost of 1 step. All other work is free:
in particular, the items can be examined and compared to each other at no cost.

Question: how many exchanges are necessary (lower bound) and sufficient (upper bound) in
the exchange model to sort an array of n items in the worst case?

Claim: Upper bound on sorting in the exchange model

n—1 exchanges is sufficient.

Proof. For this we just need to give an algorithm. For instance, consider the algorithm that in
step 1 puts the smallest item in location 1, swapping it with whatever was originally there. Then
in step 2 it swaps the second-smallest item with whatever is currently in location 2, and so on
(if in step k, the kth-smallest item is already in the correct position then we just do a no-op).
No step ever undoes any of the previous work, so after n —1 steps, the first n —1 items are in
the correct position. This means the nth item must be in the correct position too. O

But are n — 1 exchanges necessary in the worst-case? If n is even, and no book is in its correct

location, then n/2 exchanges are clearly necessary to “touch” all books. But can we show a
better lower bound than that?

11

Claim: Lower bound on sorting in the exchange model

In fact, n —1 exchanges are necessary, in the worst case.

Proof. Here is how we can see it. Create a graph in which a directed edge (i, j) means that that
the book in location i must end up at location j. An example is given in Figure 1.

Figure 1: Graphforinput [f ¢ d e b a gl

This is a special kind of directed graph: it is a permutation — a set of cycles. In particular,
every book points to somelocation, perhaps its own location, and every location is pointed to
by exactly one book. Now consider the following points:

1.

What is the effect of exchanging any two elements (books) that are in the same cycle?

Answer: Suppose the graph had edges (i;, j;) and (i», j») and we swap the elements in loca-
tions i; and i». Then this causes those two edges to be replaced by edges (i,, j;) and (i3, j»)
because now it is the element in location i, that needs to go to j; and the element in #; that
needs to go to j,. This means that if i; and i, were in the same cycle, that cycle now becomes
two disjoint cycles.

. What is the effect of exchanging any two elements that are in different cycles?

Answer: If we swap elements i; and i, that are in different cycles, then the same argument
as above shows that this merges those two cycles into one cycle.

. How many cycles are in the final sorted array?

Answer: The final sorted array has n cycles.

Putting the above 3 points together, suppose we begin with an array consisting of a single cycle,
suchas|[n,1,2,3,4,...,n—1]. Each operation at best increases the number of cycles by 1 and in
the end we need to have n cycles. So, this input requires n —1 operations. O

12

	Terminology: Upper Bounds and Lower Bounds
	Selection in the comparison model
	Finding the maximum of n elements
	Finding the second-largest of n elements
	An alternate technique: decision trees

	Sorting in the comparison model
	An Adversary Argument
	Extra example: Sorting with duplicates

	Sorting in the exchange model

