15-451/651: Design & Analysis of Algorithms April 27, 2021
Lecture #21: Closest Pairs last changed: April 27, 2021

1 Preliminaries
We'll give two algorithms for the following closest pair problem:
Given n points in the plane, find the pair of points that is the closest together.

The first algorithm is a deterministic divide and conquer and runs in O(nlogn). The second one
is random incremental and runs in expected time O(n). In this lecture we make the following
assumptions:

We assume the points are presented as real number pairs (z,y).
We assume arithmetic on reals is accurate and runs in O(1) time.
We will assume that we can take the floor function of a real.

We also assume that hashing is O(1) time.

These assumptions (in this context) are resonable, because the algorithms will not abuse this power.

2 O(nlogn) Divide and Conquer Algorithm

Clearly, we can solve the problem in O(n?) time, but in fact we can do better. The main idea is
to divide the points in half, and recursively find the closest pair of points in each half. The tricky
part will be the case when the closest pair of points spans the line that divides the points in half,
like the shaded pair below:

o =

To handle such pairs, we look at the “slab” of width 20 centered on the dividing line L. For each
of the points there, we check its distance against other points in the slab. The key fact is that for
each point in the slab, we will need to check it against only a few points. We see why soon, but
first, here is the pseudocode for the algorithm:

ClosestPair (p1,p2,...,pn):
// The points are in sorted order by x.
// We also have the points in a different list ordered by y

If n < 3 then solve and return the answer.
Let m = [n/2]
Let 0 = min(ClosestPair(p1, ..., pm), ClosestPair(pmt1,...,0n))

Form a list ¢ of the points (sorted by increasing y) that are
within § of the x coordinate of p,,. Call these points ¢1,¢q2 - .. gk

Now we compute d;, the minimum distance between ¢; and
all the gs below it, for each 1 < i < k as follows:

d; = min distance from ¢; to ¢;—1,¢;—2, ..., q;, where we stop
when j gets to 1, or the y coordinate gets
too small: ¢; - (0,1) < ¢g;-(0,1) =6

Return min(dy, ..., d,d)

The divide and conquer approach is obvious. The closest pair is either within the left half, within
the right half, or it has one endpoint in the left half and one in the right half. If it is that last case,
it’s clear that both of the points must be within § of the dividing line, so it is that middle region
that the merge step focuses on:

We need to determine if there is a pair that straddles the dividing line that has a distance less than
6. This is accomplished by the inner loop that computes d;. It’s obviously correct, because any
pairs that the loop does not consider are too far apart. (Either they are not in the 2§-wide slab, or
their y coordinates differ by at least §.) The only tricky part is proving that the inner loop (where
we compute the distance from ¢; to g;—1, ..., ¢;) finds a stopping value of j in O(1) time.

The key idea is to divide the slab into a grid of the appropriate size for the analysis. We use a grid
of squares that are §/2 on a side:

yof
—/f\h
: S
a+t merst Points
% 2 loe{'W 2 Need +o
E be consridered
L

In this figure there is a four (across) by two (down) grid of squares of size /2. The top of the grid
goes through ¢;. Note that each of these squares can contain at most one of the points (interior
or on its boundary), because any two points in the square are at most §/v/2 < & apart. Therefore
any ¢ that is below the bottom of this grid is at least § away from ¢;, and thus has no effect on the
closest pair distance. This proves that there are at most 7 points besides below ¢; that are tested
before the loop terminates. So for each ¢ this search is O(1) time.

The initiation phase sorts by = and also by y. This is O(nlogn). Subsequent phases just filter
these sorted lists, and no further sorting is done.

So the algorithm partitions the points (O(n)), does two recursive calls of n/2 in size, scans the
points again to form the list ¢ (O(n)), then scans the list ¢ looking for the closest side-crossing pair

(O(n)).

So we get the classic divide and conquer recurrence:
T(n)=2T(n/2)+n

which solves to O(nlogn).

3 Sariel Har-Peled’s Randomized O(n) Algorithm for closest pair

For any set of points P, let CP(P) be the closest pair distance in P.

We're going to define a “grid” data structure, and an API for it. The grid (denoted G) stores a set
of points (that we’ll call P) and also stores the closest pair distance r for those points. The number
r is called “the grid size of G”. In other words, we maintain the invariant that the grid size will
always be equal to the closest distance between any points currently in the grid. Here’s the API:

MakeGrid(p, ¢): Make and return a new grid containing points p and ¢ using r = |p — ¢| (the
distance between p and q) as the initial grid size.

Lookup(G,p): p is a point, G is a grid. This returns two types of answers. Let 1’ be the
closest distance from p to a point in P. If v/ < r then return r'. If v/ > r
return “Not Closest”. Note that Lookup() does not need to compute r’ if
>

Insert(G, p): G is a grid. p is a new point not in the grid. This inserts p into the grid. It
returns the new grid size.

Here’s an example Grid data structure:

L

®

\
o
—S5—>

We now discuss how to implement this API. First define a function Boxify((x,y),r). This returns
the integer point (|z/r], |y/r|). This gives the grid “box” that a point belongs to.

The data structure maintains a hash table whose keys are these integer pairs. The values in the
hash table are lists of points from P. So the key (4,7) (also called a boz) in the hash table stores
all the points of P whose Boxify() value is (i, 7).

MakeGrid(p, q) is trivial. Just insert p and ¢ into a new table with r = [p — ¢|.

Lookup(G, p) computes Boxify(p,r). It then looks in that box, and the 8 surrounding ones, and
computes the distance between p and the closest one of these. Call this number . If ' < r, then
we return r’. If v/ > r then return “Not Closest”. This works because we know that if there is a
point closer to p than r, it must be in one of the 9 boxes that are searched by this function:

/\
&r

For example, in the grid with points at the top of this page, suppose a new point p lands in the
middle square of this grid. Now to determine if it is closer to another point than the grid size,
all we have to do is examine the points in each of the nine boxes shown. (In this case it is eight
points.)

Also note that the running time of this is O(1) because it does 9 lookups in the hash table, and
the total number of points it has to consider is at most 36. This is because a box contains at most
4 points by a similar argument as we made for the previous closest pair algorithm:

Each of the r/2 subregions can have at most one point in it.

4

Insert(G, p) works as follows. It first does a Lookup(G,p). If the result is “Not Closest” it just
inserts p into the data structure into box Boxify(p,r). This is correct, since it means that p does
not create a new closest pair, so the grid size should be unchanged. This is O(1) time. On the other
hand if the Lookup() returns 7’ < r, then the algorithm rehashes every point into a new hash table
based on the new grid size being /. This takes O(i) time if there are i points now being stored in
the data structure.

These algorithms are clearly correct, simply by virtue of the fact that at any point in time the grid
size 7 is equal to the CP(P) where P is the set of points in the data structure. This is preserved
by all the operations.

We can now complete the description of the algorithm:

Randomized-CP(P):
Randomly permute the points. Call the new ordering p1,po, ..., Pn.
G = MakeGrid(p1, p2)
for i =3 ton do
r = Insert(G, p;)
done
return r

Claim: This algorithm computes CP(P).
Proof: Follows from the definition of the API. [|

Claim: The algorithm runs in expected O(n) time.

Proof: Recall the time to do Insert() is O(1) if the grid size does not change, and O(i) (i = the
number of points in the grid) if the grid size does change.

We use an argument similar to the one we used for Seidel’s LP algorithm, called “backward anal-
ysis”:

Consider running the algorithm backwards. Here we are deleting points in order pn,pn—1,-..,P3.
When deleting point 4, the operation is O(1) if the closest pair distance does not change, and O(%)
if it does. In general if you remove a random point from a set of ¢ points, the probability that the
closest pair distance changes is at most 2/i: if there is just one pair of points that achieves the
minimum distance, then you have to remove one of those two points to increase the minimum. If
there is more than one pair, then the probability is lower.

So the removal is costly (i.e. O(7)) with probability at most 2/i, and cheap O(1) with the remaining
probability. This is exactly the same situation as in Seidel’s LP algorithm. Therefore the expected
cost of a step is O(1). Thus the expected cost of the entire algorithm is O(n). [

On the next page you can find code implementing this algorithm in Ocaml.

(* Sariel Har-Peled's linear time algorithm for closest pairs. Random.self init ();

Danny Sleator, Nov 2014 let swap i j =
*) let (pi,pj) = (p-(i),p-(J)) in
p.(i) <- pj; p-.(J) <- pi
let sg x = x *. x in
for i=0 to n-2 do
(* The function below takes an array of points (float*float), and returns let r = Random.int (n-i) in
the distance between the closest pair of points. *) swap i (i+r)
let closest_pair p = done;

let n = Array.length p in
let rec loop h i r =

let dist i j = (* already built the table for points 0...i, and they have dist r *)
let (xi,yi) = p.(i) in
let (xj,yj) = p.(3) in if i=n-1 then r else
sqrt ((sq (xi -. xj)) +. (sq (yi -. ¥3))) let i = i+l in
in let (ix,iy) = boxify p.(i) r in
let 1i = ref [] in
let truncate x r = int_of_ float (floor (x /. r)) in for x = ix-1 to ix+1 do
let boxify (x,y) r = (truncate x r, truncate y r) in for y = iy-1 to iy+1 do
1li := (getbox h (x,y)) @ !1li
let getbox h box = try Hashtbl.find h box with Not_found -> [] in done
done;
let add_to_h h i box = ©
Hashtbl.replace h box (i::(getbox h box)) let r' = List.fold_left (
in fun ac j -> min (dist i j) ac

) max_float !1i in
let make grid i r =

(* put points p.(0) ... p.(i) into a new grid of size r. if r' < r then (

it has already been established that the closest pair loop (make grid i r') i r'

in that point set has distance r ¥*)) else (
let h = Hashtbl.create 10 in add_to_h h i (ix,iy);
loop h i r

for j=0 to i do)

add to_h h j (boxify p.(j) r) in
done;
h let r0 = dist 0 1 in

in loop (make _grid 1 r0) 1 r0

	Preliminaries
	O(n logn) Divide and Conquer Algorithm
	Sariel Har-Peled's Randomized O(n) Algorithm for closest pair

