
15-451/651: Design & Analysis of Algorithms April 20, 2021
Lecture #19: Computational Geometry Introduciton last changed: April 20, 2021

1 Introduction

Computational geometry is the design and analysis of algorithms for geometric problems that arise
in low dimensions, typically two or three dimensions. Many elegant algorithmic design and analysis
techniques have been devised to attack geometric problems. This is why I’ve included this topic in
this course.

Some applications of CG:

Computer Graphics

images creation

hidden surface removal

illumination

Robotics

motion planning

Geographic Information Systems

Height of mountains

vegetation

population

cities, roads, electric lines

CAD/CAM computer aided design/computer aided manufacturing

Computer chip design and simulations

Scientific Computation

Blood flow simulations

Molecular modeling and simulations

Basic algorithmic design approaches:

• Divide-and-Conquer

• Line-Sweep (typically in 2D)

• Random Incremental

In this course there will be three lectures on computational geometry covering the following topics:

• Geometric primitives

• Convex hull in 2D

• Sweep line algorithm for intersecting a set of segments

• Two algorithms for the point location problem

1

1.1 Representations

The basic approach used by computers to handle complex geometric objects is to decompose the
object into a large number of very simple objects. Examples:

• An image might be a 2D array of dots.

• An integrated circuit is a planar triangulation.

• Mickey Mouse is a surface of triangles

It is traditional to discuss geometric algorithms assuming that computing can be done on ideal
objects, such as real valued points in the plane. The following chart gives some typical examples
of representations.

Abstract Object Representation

Real Number Floating Point Number, Big Number

Point Pair of Reals

Line Pair of Points, An Equation

Line Segment Pair of Endpoints

Triangle Triple of points

Etc

1.2 Using Points to Generate Objects

Suppose P1, P2, . . . Pk ∈ Rd. Below are several ways to use these points to generate more complex
objects.

Linear Combination

Subspace =
∑

αiPi where αi ∈ R

Affine Combination

Plane =
∑

αiPi where
∑

αi = 1, αi ∈ R

Convex Combination

Body =
∑

αiPi where
∑

αi = 1, αi ≥ 0 αi ∈ R

!
"#$%&'(!)&*+,!-.(!/0-.! 121/!3)!

OneNote Online https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SDACE4EBC921613DBE!...

1 of 1 3/15/15 9:14 PM

2

2 Primitive Operations

Basics

I’ll be giving integer implementations of these primitives in ocaml. Let’s start with some basic
operations on vectors in 2D. The code below defines vector addition subtraction, cross product, dot
product and the sign of a number.

let (--) (x1,y1) (x2,y2) = (x1-x2, y1-y2)

let (++) (x1,y1) (x2,y2) = (x1+x2, y1+y2)

let cross (x1,y1) (x2,y2) = (x1*y2) - (y1*x2)

let dot (x1,y1) (x2,y2) = (x1*x2) + (y1*y2)

let sign x = compare x 0

(* returns -1 if x<0, 0 if x=0 and 1 if x>0 *)

The first two operations are subtraction and addition of vectors, as shown in the following figure.
Note that sometimes we view a pair (x, y) as a vector, and sometimes we view it as a point.

p Al

ftp.q 8

q fig
Ojo

pCross Product

0,0 q

pxq signed area of the
parallelogram In this
case negative by the
right hand rule

P
Dot Product

r poof 0 Lpc
rgeo

r f I

0,0

p of projects P onto the
l l l

The cross product of p and q, denoted p × q, is the signed area of the parallogram with the four
vertices (0, 0), p, q, p+q. The sign is determined by the “right hand” rule. Alternatively if the angle
at (0, 0) starting at p, going clockwise around (0, 0) and ending at q is less than 180 degrees, the
cross product is negative, otherwise it’s positive. It’s zero of the angle between p and q is 0 or 180
degrees.

p Al

ftp.q 8

q fig
Ojo

P PtgCross Product

o.o q

pxq signed area of the
parallelogram In this
case negative by the
right hand rule

P
Dot Product

r poof 0 Lpc
rgeo

r f I

0,0

p of projects P onto the
l l l

3

The dot product is a projection operator. Consider the line L through (0, 0) and q. Project p to
the line L with a perpendicular (shown in green in the following figure.) Call this point p′. Then
the value of p · q is the length of p′, denoted |p′|, times the length of q. That is, |p′| ∗ |q|. Like the
dot product this value is signed. If (0, 0) is not between p′ and q then it’s positive, otherwise it’s
negative. The figure below shows the case when |q| = 1.

p Al

ftp.q 8

q fig
Ojo

P PtgCross Product

o.o q

pxq signed area of the
parallelogram In this
case negative by the
right hand rule

P
Dot Product

r poof 0 Lpc
rgeo

r f I

0,0

p of projects P onto the
l l l

Line Side Test

Given three points P1, P2, P3, the output of the line side test is “LEFT” if the point P3 is to the
left of ray P1 → P2, “RIGHT” if the point P3 is to the right of ray P1 → P2, and “ON” if it is on
that ray.

The algorithm is to construct vectors V2 = P2−P1 and V3 = P3−P1. Then take the cross product
of V2 and V3 and look at its value compared to 0.

!
"#$%&'(!)&*+,!-.(!/0-.! 121/!3)!

OneNote Online https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SDACE4EBC921613DBE!...

1 of 1 3/16/15 1:31 AM

Here is an implementation of this test in ocaml which returns 1 if p3 is LEFT of ray p1 → p2, −1
if RIGHT, and 0 if ON.

let line_side_test p1 p2 p3 = sign (cross (p2--p1) (p3--p1))

Line segment intersection testing

Here we are given two line segments (a, b) and (c, d) (where a, b, c, d are points), and we have to
determine if they cross. We can do this using four line-side tests, as illustrated here.

4

!
"#$%&'(!)&*+,!-.(!/0-.! -0120!3)!

!

OneNote Online https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SDACE4EBC921613DBE!...

1 of 1 3/16/15 3:00 AM

let segments_intersect (a,b) (c,d) =

(line_side_test a b d) * (line_side_test a b c) <= 0 &&

(line_side_test c d a) * (line_side_test c d b) <= 0

By changing the <= into a <, this can be changed into a strict intersection test, which would require
the segments to intersect at a point interior to both of them.

In-circle test

Three non-colinear points determine a circle. The in-circle test will tell us the relationship of a
fourth point to the circle determined by the other three points. So the test takes points a, b, c, and
d as inputs, and returns 1, 0, or −1 as follows:

This returns 0 if the four points are on the same circle (or straight line.) Suppose I
walk forward around the circle with my right hand on the circle from a → b → c. It
returns 1 if d is on the same side of the circle as my body, and −1 otherwise. It’s a
fourth degree function in the given coordinates.

let incircle (ax,ay) (bx,by) (cx,cy) (dx,dy) =

let det ((a,b,c),(d,e,f),(g,h,i)) =

a*(e*i - f*h) - b*(d*i - f*g) + c*(d*h - e*g)

in

let row ax dx ay dy =

let a = ax - dx in

let b = ay - dy in

(a, b, (a*a) + (b*b))

in

sign (det (row ax dx ay dy, row bx dx by dy, row cx dx cy dy))

Adaptive Precision Floating-Point Arithmetic and Fast Robust
Predicates for Computational Geometry

Jonathan Richard Shewchuk
Computer Science Division
University of California at Berkeley
Berkeley, California 94720-1776

Created as part of the Archimedes project (tools for parallel finite element methods).
Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.

Many computational geometry applications use numerical tests known as the orientation and incircle tests. The orientation test determines
whether a point lies to the left of, to the right of, or on a line or plane defined by other points. The incircle test determines whether a point
lies inside, outside, or on a circle defined by other points.

Each of these tests is performed by evaluating the sign of a determinant (see the figure below). The determinant is expressed in terms of the
coordinates of the points. If these coordinates are expressed as single or double precision floating-point numbers, roundoff error may lead
to an incorrect result when the true determinant is near zero. In turn, this misinformation can lead an application to fail or produce incorrect
results.

One way to solve this problem is to use exact arithmetic. Unfortunately, traditional libraries for arbitrary precision floating-point arithmetic
are quite slow, and can reduce the speed of an application by one or two orders of magnitude.

To minimize this problem, I've produced algorithms and implementations for performing the 2D and 3D orientation and incircle tests

Fast Robust Predicates for Computational Geometry http://www.cs.cmu.edu/~quake/robust.html

1 of 2 3/16/15 3:26 AM

The picture above illustrates a case when the incircle test would return 1. (This figure was taken
from http://www.cs.cmu.edu/~quake/robust.html)

5

3 Computing the Convex Hull

This is the “sorting problem” of computational geometry. There are many algorithms for the
problem, and there are often analogous to well-known sorting algorithms.

A point set A ⊆ Rd is convex if it is closed under convex combinations. That is, if we take any
convex combination of any two points in A, the result is a point in A. In other words if when we
walk along the straight line between any pair of points in A we find that the entire path is also
inside of A, then the set A is convex.

We saw convex sets before when we talked about linear programming. One observation we used at
that time is that the intersection of any two convex sets is convex.

Definition: ConvexClosure(A) = smallest convex set containing A

This is well-defined and unique for any point set A. (We won’t prove this.) Assuming that the set
A is a closed set of points we can define the convex hull of A as follows:

Definition: ConvexHull(A) = boundary of ConvexClosure(A). (A point p is on the boundary of
S if for any ε > 0 there exists a point within ε of p that is inside S and also another point with ε
of p that is outside of S.)

These definitions are general and apply to any closed set of points.

For our purposes we’re only interested in the ConvexClosure(A) and ConvexHull(A) when A is a
finite set of points. In this case the ConvexClosure will be a closed polyhedron.

A computer representation of a convex hull must include the combinatorial structure. In two
dimensions, this just means a simple polygon in, say counter-clockwise order. (In three dimensions
it’s a planar graph of vertices edges and faces) The vertices are a subset of the input points.

So in this context, a 2D convex hull algorithm takes as input a finite set of n points A ∈ R2, and
produces a list L of points from A which are the vertices of the ConvexHull(A) in counter-clockwise
order.

This figure shows the convex hull of 10 points.

Today we’re going to focus on algorithms for convex hulls in 2-dimensions. We first present an
O(n2) algorithm, than refine it to run in O(n log n). To slightly simplify the exposition we’re going
to assume that no three points of the input are colinear.

3.1 An O(n2) Algorithm for 2D Convex Hulls

First we give a trivial O(n3) algorithm for convex hull. The idea is that a directed segment between
a pair of points (Pi, Pj) is on the convex hull iff all other points Pk are to the left of the ray from

6

Pi to Pj . Note that no point to the right of the ray can be in the convex hull because that entire
half-plane is devoid of points from the input set. And the points on the segment (Pi, Pj) are in the
ConvexClosure of the input points. Therefore the segment is on the boundary of the ConvexClosure.
Therefore it is on the convex hull.

Here’s the pseudo-code for this algorithm.

Slow-Hull(P1, P2, . . . , Pn):
For each distinct pair of indices (i, j) do

if for all 1 ≤ k ≤ n and k 6= i and k 6= j
it is the case that Pk is to the left of segment (Pi, Pj)
Then output (i, j).

done

(To make this into a proper convex hull algorithm, a final pass would be required to turn this list
of pairs of indices into an ordered list of points in counterclockwise order.)

To get this to run in O(n2) time we just have to be a bit more organized.

The first observation is that if we take the point with the lowest y-coordinate, this point must be
on the contex hull. Call it Ps. Suppose we now measure the angle from Ps to all the other points.
These angles range from 0 to π. If we take the point Pt with the smallest such angle, then we know
that (Ps, Pt) is on the convex hull. The following figure illustrates this.

All the other points must be to the left of segment (Ps, Pt). We can continue this process to find
the point Pu which is the one with the smallest angle with respect to (Ps, Pt). This process is
continued until all the points are exhausted. The running time is O(n) to find each segment. There
are O(n) segments, so the algorithm is O(n2).

Actually we don’t need to compute angles. The line-side-test can be used for this instead. For
example look at what happens after we’ve found Ps and Pt. We process possibilities for the next
point in any order. Say we start from a in the figure. Then we try b, and note that b is on the right
side of segment (Pt, a) so we jettison a and continue with (Pt, b). But then we then throw out b in
favor of c. It turns out that the remaining points are all to the left of segment (Pt, c). Thus c = Pu

is the next point on the convex hull.

7

3.2 Graham Scan, an O(n log n) Algorithm for 2D Convex Hulls

We can convert this into an O(n log n) algorithm with a slight tweek. Instead of processing the
points in an arbitrary order, we process them in order of increasing angle with respect to point ps.

Let’s relabel the points so that P0 is the starting point, and P1, P2 . . . are the remaining points in
order of increasing angle with respect to P0. From the discussion above we know that (P0, P1) is
an edge of the convex hull.

The Graham Scan works as follows. We maintain a “chain” of points that starts with P0, P1,
This chain has the property that each step is always a left turn with respect to the previous element
of the chain. We try to extend the chain by taking the next point in the sorted order. If this has
a left turn with respect to the current chain, we keep it. Otherwise we remove the last element of
the chain (repeatedly) until the chain is again restored to be all left turns. Here’s an example of
the algorithm.

At this point we’ve formed the chain P0, P1, P2, P3, P4. But the last step (from P3 to P4) is a right
turn. So we delete P3 from the chain. Now we have:

Now at P2 we have a right turn, so we remove it, giving:

8

Now the process continues with points P5 and P6. When P6 is added, P5 becomes a right turn, so
it’s removed.

After all the points are processed in this way, we can just add the last segment from Pn−1 to P0,
to close the polygon, which will be the convex hull.

Each point can be added at most once to the sequence of vertices, and each point can be removed
at most once. Thus the running time of the scan is O(n). But remember we already paid O(n log n)
for sorting the points at the beginning of the algorithm, which makes the overall running time of
the algorithm O(n log n).

The reason this algorithm works is because whenever we delete a point we have implicitly shown
that it is a convex combination of other points. For example when we deleted P3 we know that
it is inside of the triangle formed by P0, P2 and P4. Because of the presorting P3 is to the left of
(P0, P2), and to the right of (P0, P4). And because (P2, P3, P4) is a right turn, P3 is to the left of
(P2, P4).

At the end the chain is all left turns, with nothing outside of it. Therefore it must be the convex
hull.

Complete ocaml code for the graham scan is at the end of these notes.

9

3.3 Lower bound for computing the convex hull

Suppose the input to a sorting problem is X1, . . . , Xn. Consider computing the convex hull of the
following set of points:

(X1, X
2
1), . . . , (Xn, X

2
n)

All of these points are on the convex hull (they’re on a parabola). Thus they are returned in the
order they appear along the parabola. No matter which convex hull algorithm is used, the points
can be reflected and/or cyclically shifted so that their x coordinates are in sorted order. Thus, they
can be sorted by computing a convex hull followed by O(n) additional work. Thus any comparison
based convex hull algorithm must make Ω(n log n) comparisons. The figure below illustrates this
phenomenon.

!
"#$%&'(!"&)*+!,-(!./,0! ,1,.!2"!

OneNote Online https://onenote.officeapps.live.com/o/onenoteframe.aspx?Fi=SDACE4EBC921613DBE!...

1 of 1 3/16/15 5:22 AM

10

3.4 Ocaml code for the Graham Scan convex hull algorithm

Source code:
let sq x = x * x
let (--) (x1,y1) (x2,y2) = (x1-x2, y1-y2)
let cross (x1,y1) (x2,y2) = (x1*y2) -
(y1*x2)
let len2 (x,y) = (sq x) + (sq y)

type side = LEFT | ON | RIGHT

let line_side_test p1 p2 p3 =

<!-- HTML generated using hilite.me --><div
style="background: #f8f8f8;
overflow:auto;width:auto;border:solid
gray;border-width:.1em .1em .1em
.8em;padding:.2em .6em;"><pre
style="margin: 0; line-height: 125%"><span
style="color: #AA22FF; font-weight:
bold">let sq x <span style="color:
#666666">= x <span style="color:

HTML:

hilite.me converts your code snippets into pretty-printed HTML format, easily
embeddable into blog posts, emails and websites.

Just copy the source code to the left pane, select the language and the color scheme,
and click "Highlight!". The HTML from the right pane can now be pasted to your blog or
email, no external CSS or Javascript files are required.

Language: OCaml Style: emacs Line numbers

CSS: border:solid gray;border-width:.1em .1em .1em .8em;padding:.2em .6em; Highlight!

Preview:

let sq x = x * x
let (--) (x1,y1) (x2,y2) = (x1-x2, y1-y2)
let cross (x1,y1) (x2,y2) = (x1*y2) - (y1*x2)
let len2 (x,y) = (sq x) + (sq y)

type side = LEFT | ON | RIGHT

let line_side_test p1 p2 p3 =
let cp = cross (p2--p1) (p3--p1) in
if cp > 0 then LEFT else if cp < 0 then RIGHT else ON

let graham_convex_hull points =
(* This algorithm takes as input a list of points, and returns a

 list of points that is the convex hull (in clockwise order) of

 the input. Duplicates are allowed in the input, and the output

 contains no three colinear points.

 graham_convex_hull [(0,0);(0,2);(2,2);(2,0);(1,1);(1,2);(1,2)]

 returns this list: [(0,2) (2,2) (2,0) (0,0)]

 *)

let base = List.fold_left min (List.hd points) points in
let points = List.filter (fun pt -> pt <> base) points in

let compare_points pi pj =
match line_side_test base pi pj with
| ON -> compare (len2 (base -- pi)) (len2 (base -- pj))
| LEFT -> -1
| RIGHT -> 1

in

let points = List.sort compare_points points in

let rec scan chain points =
let (c1,c2,chainx) = match chain with
| c1::((c2::_) as chainx) -> (c1,c2,chainx)
| _ -> failwith "chain must have length at least 2"

in
match points with [] -> chain
| pt::tail ->
match line_side_test c2 c1 pt with
| ON ->
if len2 (pt--c2) > len2 (c1--c2)
then scan (pt::chainx) tail
else scan chain tail

| LEFT -> scan (pt::chain) tail
| RIGHT -> scan chainx points

in

match points with
| (p1::((_::(_::_)) as rest)) -> scan [p1;base] rest;
| _ -> List.rev (base::points)

API • Code • Made by Alexander Kojevnikov • Powered by Flask and Pygments

Source code beautifier / syntax highlighter – convert code snippets to ... http://hilite.me/

1 of 1 11/13/18, 8:57 AM

11

	Introduction
	Representations
	Using Points to Generate Objects

	Primitive Operations
	Computing the Convex Hull
	An O(n2) Algorithm for 2D Convex Hulls
	Graham Scan, an O(n logn) Algorithm for 2D Convex Hulls
	Lower bound for computing the convex hull
	Ocaml code for the Graham Scan convex hull algorithm

