451/651 Lecture 16 — Approximation Algorithms

Today we examine several classical NP-complete problems from
the point of view of obtaining approximate solutions that are
“close” to optimum.

To do so we'll switch back to the “solution™ version of problems
instead of the “decision” version.



Job Scheduling to Minimize Load

» You have m identical machines

» You want to schedule n jobs. Each job j € {1,2,...,n} has a
processing time p; > 0.

> You want to partition the jobs among the machines to
minimize the load of the most-loaded machine.

» In other words, if S; is the set of jobs assigned to machine i,
define the makespan of the solution to be
MaXmachines i(ZjeS,- pj)-

» You want to minimize the makespan of the solution you
output.



Alternative Model. Blocks

» You have n blocks. Block j has height p;.

» You have to stack the blocks into m separate stacks so as to
minimize the height of the tallest stack.

> The makespan is the height of the tallest stack.



Wait, first this is NP-complete

The SUBSET SUM problem is this: Given integers wy, ..., w, and

T, does there exist a subset of the w; integers that sums exactly to
T?

(See the last lecture for a proof that this is NP-complete.)
(Also recall that we saw a DP algorithm for this that ran in O(nT)
time.)

Easy exercise to prove that we can reduce the SUBSET SUM
problem to the decision version of the MAKESPAN problem.



Algorithm 1: Greedy
Pick any block. Place it in the currently lowest stack.
Theorem: Greedy is at most 2 times optimum.
Proof:



Algorithm 2: Sorted Greedy
Same as Greedy, except place the blocks in decreasing order of size.
Theorem: Greedy is at most 1.5 times optimum.
Proof:



VERTEX-COVER

VERTEX-COVER Solution version: Given a graph G, find the
smallest set of vertices such that every edge is incident to at least
one of them.

VERTEX-COVER Decision version: Given G and integer k, does
G contain a vertex cover of size < k?

Exercise: Find a vertex cover in the graphs above of size 3. Show
that there is no vertex cover of size 2 in them.



Approximation Algorithms for VERTEX-COVER

If the optimal algorithm uses k* vertices, our goal is to achieve
some constant ck™ vertices, for as small a ¢ as possible.

In fact we'll see how to achieve ¢ = 2. Nobody knows if it's
possible to achieve a factor of ¢ = 1.99.

Greed worked before, so let's try it again:

Greedy 1: Pick an arbitrary vertex with at least one uncovered
edge incident to it, put it into the cover, and repeat.

What would be a bad example for this algorithm?



Greedy Algorithms for VERTEX-COVER, Contd.

Greedy 2: Picking the vertex that covers the most uncovered
edges.

Can produce a solution Q(log n) times larger than optimal.

(See lecture notes for the construction.)



A 2-Approximation for VERTEX-COVER

VC Alg 1: Pick an arbitrary edge. We know any vertex cover
must have at least 1 endpoint of it, so let's take both endpoints.
Then, throw out all edges covered and repeat. Keep going until
there are no uncovered edges left.

Theorem: VC Alg 1 gives a 2-approximation for VERTEX-COVER
Proof:

The key is to characterize (in the right way) the set of edges that
VC Alg 1 finds.



Another 2-Approximation for VERTEX-COVER

VC Alg 2: Set up an LP. For each node i define a variable
0 < x; < 1. For each edge (i,j) write a constraint x; +x; > 1. The
objective function is min(xy + - - - + x,).

Solve the LP. Now for each variable x; > 1/2 round it to 1. Round
the others to 0.

Claim 1 The algorithm finds a valid vertex cover.

Claim 2 The one it finds is a 2-approximation.



Hardness of Approximating VERTEX-COVER

Interesting fact: nobody knows any algorithm with approximation ratio
2 — ¢, for constant € > 0 Best known is 2 — O(1/+/log n), which is
2—o(1).

There are results showing that a good-enough approximation algorithm
will end up showing that P=NP. Clearly, a 1-approximation would find
the exact vertex cover, and show this. Hastad showed that if you get a
7 /6-approximation, you would prove P=NP. This 7/6 was improved to
1.361 by Dinur and Safra.

Beating 2 — £ has been related to some other open problems (it is
“unique games hard"), but is not known to be NP-hard.



Metric Traveling Salesperson Problem

METRIC TSP is: Input n points with distances dj; between any
pair (which is a metric satisfying identity, symmetry, and
triangle-inequality). This is a matrix D.

Solution version: Find a permutation of 1,2,..., n that such that
visiting the cities in that order has minimum length.

MST-Based Algorithm: Think of the input as a complete graph
G with a distances defined by dj;.

1. Find a MST of G.

2. Use the “right hand rule” to walk around the tree.

3. Delete duplicates, giving a permutation.



MST-Based Algorithm for METRIC TSP Contd.

Draw an example here:



MST-Based Algorithm for METRIC TSP Contd.

Theorem: The MST-Based Algorithm is a 2-approximation for
METRIC TSP.

Proof:
Observe OPT > MST.
The tour constructed is at most 2xMST.



Christofides’ Algorithm for METRIC TSP

We can improve this to a 1.5-approximation.

1.

Noos~wh

Find an MST T of G.

Let S = the set of vertices of odd degree in T.
Find the minimum cost matching M of S.

Combine the edges of the T and M together.

All vertex are now of even degree.

Find an Euler tour of this set of edges.

Use shortcutting as before to construct a TSP tour.



Christofides’ Algorithm for METRIC TSP Contd.

Theorem: The algorithm is a 1.5-approximation for METRIC
TSP.

Proof:



Improved Approximation Algorithm for METRIC TSP

A paper from 2020 by Karlin, Klein, and Oveis Gharan presents an
improved algorithm, which gives a
1.49999999999999999999999999999999999 approximation.

This is not an April fools joke. See
https://arxiv.org/abs/2007.01409.



