
15-451/651: Design & Analysis of Algorithms February 4, 2021
Lecture #2: Concrete models and tight upper/lower bounds last changed: February 9, 2021

1 Introduction

In this lecture, we will examine some simple, concrete models of computation, each with a precise
definition of what counts as a step, and try to get tight upper and lower bounds for a number of
problems. Specific models and problems examined in this lecture include:

• The number of comparisons needed to sort an array.

• The number of exchanges needed to sort an array.

• The number of comparisons needed to find the largest and second-largest elements in an array.

• The number of probes into a graph needed to determine if the graph is connected (the eva-
siveness of connectivity).

2 Terminology: Upper Bounds and Lower Bounds

In this lecture, we will look at (worst-case) upper and lower bounds for a number of problems
in several different concrete models. Each model will specify exactly what operations may be
performed on the input, and how much they cost. Typically, each model will have some operations
that cost a certain amount (like performing a comparison, or swapping a pair of elements), some
that are free, and some that are not allowed at all.

• By an upper bound of Un for some problem and some length n, we mean that there exists an
algorithm A that for every input x of length n costs at most Un.

• A lower bound for some problem and some length n, is obtained by the negation of an upper
bound for that n. It says that some upper bound is not possible (for that value of n). If we
take the above statement (in italics) and negate it, we get for every algorithm A there exists
an input x of length n such that A costs more than Un on input x.

Rephrasing slightly: by a lower bound of Ln for some problem and some length n, we mean
that for any algorithm A there exists an input x of length n on which A costs at least Ln
steps.

These were definitions for a single value of n. Now a function f : N → R is an upper bound for
a problem if f(n) is an upper bound for this problem for every n ∈ N. And a function g(·) is an
lower bound for a problem if g(n) is a lower bound for this problem for every n.

The reason for this terminology is that if we think of our goal as being to understand the “true
complexity” of each problem, measured in terms of the best possible worst-case guarantee achievable
by any algorithm, then an upper bound of f(n) and lower bound of g(n) means that the true
complexity is somewhere between g(n) and f(n).

Finally, what is the cost of an algorithm? As we said before, that depends on the particular model
of computation we’re using. We will consider different models below, and show each has their
own upper and lower bounds. When you’re writing programs, you typically use rules-of-thumb to
calculate the cost of opetations (adding two integers costs 1, copying strings of length ` should cost
≈ `, etc) — we make this precise using certain cost models.

1



3 Sorting in the comparison model

One natural model for examining problems like sorting is what is known as the comparison model.

Definition 1 In the comparison model, we have an input consisting of n items (typically in some
initial order). An algorithm may compare two items (asking is ai > aj?) at a cost of 1. Moving the
items around is free. No other operations on the items are allowed (such as using them as indices,
XORing them, etc).

For the problem of sorting in the comparison model, the input is an array a = [a1, a2, . . . , an], and
the output is a permutation of the input π(a) = [aπ(1), aπ(2), . . . , aπ(n)] in which the elements are in
increasing order. We begin this lecture by showing the following lower bound for comparison-based
sorting.

Theorem 2 Any deterministic comparison-based sorting algorithm must perform at least lg(n!)
comparisons to sort n elements in the worst case.1 Specifically, for any deterministic comparison-
based sorting algorithm A, for all n ≥ 2 there exists an input I of size n such that A makes at least
lg(n!) = Ω(n log n) comparisons to sort I.

To prove this theorem, we cannot assume the sorting algorithm is going to necessarily choose a
pivot as in Quicksort, or split the input as in Mergesort — we need to somehow analyze any possible
(comparison-based) algorithm that might exist. We now present the proof, which uses a very nice
information-theoretic argument. (This proof is deceptively short: it’s worth thinking through each
line and each assertion.)

Proof: Let us begin with a simple general claim. Suppose you have some problem where there are
M possible different outputs the algorithm might produce: e.g., for sorting by comparisons where
the output can be viewed as a specific permutation of the input, each possible permutation of the
input is possible, and hence M = n!. Suppose furthermore that for each of these outputs, there
exists some input under which it is the only correct answer. This is true for sorting. Then, we
have a worst-case lower bound of lgM . The reason is that the algorithm needs to find out which
of these M outputs is the right one, and each YES/NO question could be answered in away that
removes at most half of the possibilities remaining from consideration. (Why half? Because each
comparison has a binary output, so it breaks the set of possibilities into two parts. At least one of
these parts contain at least half the possibilities.) So, in the worst case, it takes at least lgM steps
to find the right answer. �

The above is often called an “information theoretic” argument because we are in essence saying
that we need at least lg(M) = lg(n!) bits of information about the input before we can correctly
decide what output we need to produce.

What does lg(n!) look like? We have: lg(n!) = lg(n) + lg(n− 1) + lg(n− 2) + ...+ lg(1) < n lg(n) =
O(n log n) and lg(n!) = lg(n) + lg(n− 1) + lg(n− 2) + ...+ lg(1) > (n/2) lg(n/2) = Ω(n log n). So,
lg(n!) = Θ(n log n).

However, since today’s theme is tight bounds, let’s be a little more precise. We can in particular
use the fact that n! ∈ [(n/e)n, nn] to get:

n lg n− n lg e < lg(n!) < n lg n
n lg n− 1.443n < lg(n!) < n lg n.

1As is common in CS, we will use “lg” to mean “log2”.

2



Since 1.433n is a low-order term, sometimes people will write this fact this as: lg(n!) = (n lg n)(1−
o(1)), meaning that the ratio between lg(n!) and n lg n goes to 1 as n goes to infinity.

How Tight is this Bound? Assume n is a power of 2 — in fact, let’s assume this for the entire
rest of today’s lecture. Can you think of an algorithm that makes at most n lg n comparisons, and
so is tight in the leading term? In fact, there are several algorithms, including:

Binary insertion sort If we perform insertion-sort, using binary search to insert each new el-
ement, then the number of comparisons made is at most

∑n
k=2dlg ke ≤ n lg n. Note that

insertion-sort spends a lot in moving items in the array to make room for each new element,
and so is not especially efficient if we count movement cost as well, but it does well in terms
of comparisons.

Mergesort Merging two lists of n/2 elements each requires at most n−1 comparisons. So, unrolling
the recurrence, we get (n−1)+2(n/2−1)+4(n/4−1)+. . .+n/2(2−1) = n lg n−(n−1) < n lg n.

4 Selection in the comparison model

4.1 Finding the maximum of n elements

How many comparisons are necessary and sufficient to find the maximum of n elements, in the
comparison model of computation?

Claim 3 (Upper bound) n− 1 comparisons are sufficient to find the maximum of n elements.

Proof: Just scan left to right, keeping track of the largest element so far. This makes at most
n− 1 comparisons.

Now, let’s try for a lower bound. One simple lower bound is that since there are n possible answers
for the location of the maximum element, our previous argument gives a lower bound of lg n. But
clearly this is not at all tight. Also, we have to look at all the elements (else the one not looked at
may be larger than all the ones we look at). But looking at all n elements could be done using n/2
comparisons; not tight either. In fact, we can give a better lower bound of n− 1.

Claim 4 (Lower bound) n − 1 comparisons are needed in the worst-case to find the maximum
of n elements.

Proof: Suppose some algorithm A claims to find the maximum of n elements using less than n−1
comparisons. Consider an arbitrary input of n distinct elements, and construct a graph in which
we join two elements by an edge if they are compared by A. If fewer than n − 1 comparisons are
made, then this graph must have at least two components. Suppose now that algorithm A outputs
some element u as the maximum, where u is in some component C1. In that case, pick a different
component C2 and add a large positive number (e.g., the value of u) to every element in C2. This
process does not change the result of any comparison made by A, so on this new set of elements,
algorithm A would still output u. Yet this now ensures that u is not the maximum, so A must be
incorrect.

Since the upper and lower bounds are equal, the bound of n− 1 is tight.

Note that this argument was different from the “information theoretic” bound we used for sorting.
Here we showed that if the algorithm makes “too few” comparisons on some input In and outputs

3



out, we can give another input In′ where the algorithms would do the same comparisons and receive
the same answers to them, and hence also output out, but out is the incorrect output for input In′.

4.2 An Adversary Argument

A slightly different lower bound argument comes from showing that if an algorithm makes “too
few” comparisons, then an adversary can fool it into giving the incorrect answer. Here is a little
example.

We want to show that any deterministic sorting algorithm on 3 elements must perform at least 3
comparisons in the worst case. (This result follows from the information theoretic lower bound of
dlg 3!e = 3, but let’s give a different proof.)

If the algorithm does fewer than two comparisons, some element has not been looked at, and the
algorithm must be incorrect. So after the first comparison, the three elements are w the winner
of the first query, l the loser, and z the other guy. If the second query is between w and z, the
adversary replies w > z; if it is between l and z, the adversary replies l < z. Note that in either
case, the algorithm must perform a third query to be able to sort correctly.

In this kind of argument the goal is to construct an adversary Ada who will answer the algorithm’s
comparisons in such a way that (a) all Ada’s answers are consistent with some input In, and (b)
her answers make the algorithm perform “many” comparisons.

4.3 Finding the second-largest of n elements

How many comparisons are necessary (lower bound) and sufficient (upper bound) to find the second
largest of n elements? Again, let us assume that all elements are distinct.

Claim 5 (Lower bound) n−1 comparisons are needed in the worst-case to find the second-largest
of n elements.

Proof: The same argument used in the lower bound for finding the maximum still holds.

Let us now work on finding an upper bound. Here is a simple one to start with.

Claim 6 (Upper bound #1) 2n − 3 comparisons are sufficient to find the second-largest of n
elements.

Proof: Just find the largest using n− 1 comparisons, and then the largest of the remainder using
n− 2 comparisons, for a total of 2n− 3 comparisons.

We now have a gap: n−1 versus 2n−3. It is not a huge gap: both are Θ(n), but remember today’s
theme is tight bounds. So, which do you think is closer to the truth? It turns out, we can reduce
the upper bound quite a bit:

Claim 7 (Upper bound #2) n+ lg n−2 comparisons are sufficient to find the second-largest of
n elements.

Proof: As a first step, let’s find the maximum element using n − 1 comparisons, but in a tennis-
tournament or playoff structure. That is, we group elements into pairs, finding the maximum in
each pair, and recurse on the maxima. E.g.,

4



6 4 2 1 8 7 3 5

6 2 8 5

6 8

8

Round 1

Round 2

Round 3

Now, given just what we know from comparisons so far, what can we say about possible locations
for the second-highest number (i.e., the second-best player)? The answer is that the second-best
must have been directly compared to the best, and lost.2 This means there are only lg n possibilities
for the second-highest number, and we can find the maximum of them making only lg(n)− 1 more
comparisons.

At this point, we have a lower bound of n − 1 and an upper bound of n + lg(n) − 2, so they are
nearly tight. It turns out that, in fact, the lower bound can be improved to exactly meet the upper
bound.3

5 Sorting in the exchange model

Consider a shelf containing n unordered books to be arranged alphabetically. In each step, we can
swap any pair of books we like. How many swaps do we need to sort all the books? Formally, we
are considering the problem of sorting in the exchange model.

Definition 8 In the exchange model, an input consists of an array of n items, and the only
operation allowed on the items is to swap a pair of them at a cost of 1 step. All other (planning)
work is free: in particular, the items can be examined and compared to each other at no cost.

Question: how many exchanges are necessary (lower bound) and sufficient (upper bound) in the
exchange model to sort an array of n items in the worst case?

Claim 9 (Upper bound) n− 1 exchanges is sufficient.

Proof: For this we just need to give an algorithm. For instance, consider the algorithm that in
step 1 puts the smallest item in location 1, swapping it with whatever was originally there. Then
in step 2 it swaps the second-smallest item with whatever is currently in location 2, and so on (if
in step k, the kth-smallest item is already in the correct position then we just do a no-op). No step
ever undoes any of the previous work, so after n− 1 steps, the first n− 1 items are in the correct
position. This means the nth item must be in the correct position too. �

But are n − 1 exchanges necessary in the worst-case? If n is even, and no book is in its correct
location, then n/2 exchanges are clearly necessary to “touch” all books. But can we show a better
lower bound than that?

Claim 10 (Lower bound) In fact, n− 1 exchanges are necessary, in the worst case.

Proof: Here is how we can see it. Create a graph in which a directed edge (i, j) means that that
the book in location i must end up at location j. An example is given in Figure 1.

2Apparently the first person to have pointed this out was Charles Dodgson (better known as Lewis Carroll!),
writing about the proper way to award prizes in lawn tennis tournaments.

3First shown by Kislitsyn (1964).

5



7

1

6

2

3

4

5

Figure 1: Graph for input [f c d e b a g]

This is a special kind of directed graph: it is a permutation — a set of cycles. In particular, every
book points to some location, perhaps its own location, and every location is pointed to by exactly
one book. Now consider the following points:

1. What is the effect of exchanging any two elements (books) that are in the same cycle?

Answer: Suppose the graph had edges (i1, j1) and (i2, j2) and we swap the elements in locations
i1 and i2. Then this causes those two edges to be replaced by edges (i2, j1) and (i1, j2) because
now it is the element in location i2 that needs to go to j1 and the element in i1 that needs
to go to j2. This means that if i1 and i2 were in the same cycle, that cycle now becomes two
disjoint cycles.

2. What is the effect of exchanging any two elements that are in different cycles?

Answer: If we swap elements i1 and i2 that are in different cycles, then the same argument as
above shows that this merges those two cycles into one cycle.

3. How many cycles are in the final sorted array?

Answer: The final sorted array has n cycles.

Putting the above 3 points together, suppose we begin with an array consisting of a single cycle,
such as [n, 1, 2, 3, 4, . . . , n − 1]. Each operation at best increases the number of cycles by 1 and in
the end we need to have n cycles. So, this input requires n− 1 operations.

6 Query models, and the evasiveness of connectivity

To finish with something totally different, let’s look at the query complexity of determining if a
graph is connected. Assume we are given the adjacency matrix G for some n-node graph. That is,
G[i, j] = 1 if there is an edge between i and j, and G[i, j] = 0 otherwise. We consider a model in
which we can query any element of the matrix G in 1 step. All other computation is free. That
is, imagine the graph matrix has values written on little slips of paper, face down. In one step we
can turn over any slip of paper. How many slips of paper do we need to turn over to tell if G is
connected?

Claim 11 (Easy upper bound) n(n−1)/2 queries are sufficient to determine if G is connected.

Proof: This just corresponds to querying every pair (i, j). Once we have done that, we know the
entire graph and can just compute for free to see if it is connected.

Interestingly, it turns out the simple upper-bound of querying every edge is a lower bound too.
Because of this, connectivity is called an “evasive” property of graphs.

6



Theorem 12 (Lower bound) n(n− 1)/2 =
(
n
2

)
queries are necessary to determine connectivity

in the worst case.

Here are two proofs of this theorem.

Proof 1: We think of this as a game between two players: the evader and the querier. The querier
asks a sequence of questions of the form “Is there an edge between vertices x and y?”. For each
question the evader must answer the question. The goal of the evader is to force the querier to ask
as many questions as possible. We’ll give a strategy for the evader which forces the querier to ask(
n
2

)
questions to determine if the graph is connected.

The evader’s strategy will be to maintain the following invariant.

At any point in time the edges that have been declared to exist form a forest of trees
involving all the vertices of the graph. For each tree T all queries among the vertices of
the T have already been asked. And for every pair of trees T and T ′ in the forest there
exists a pair (x, y) with x ∈ T and y ∈ T ′ that has not been queried.

Note that until there is just one tree, the querier does not know if the graph is connected or not.

Initially each tree is just one vertex, and the invariant trivially holds. The evader maintains the
invariant as follows. If the query is for two vertices in the same tree, then the evader just gives the
answer it gave before to this query. Nothing changes and the invariant still holds.

Say the query is for vertices x and y in two different trees Tx and Ty. Then the evader determines
if all the other possible edges between Tx and Ty have already been queried. If that is the case,
then the evader answers 1 for “yes”, otherwise it answers 0 for “no”. Note that if it answers yes,
(and joins the two trees) then, by induction, all the edges within the set Tx

⋃
Ty have already been

queried, and the invariant holds. (If it answers “no” the invariant trivially still holds.)

At any point in time before there is just one tree it is not known if the graph is connected or not.
Finally when there is just one tree the graph is connected, but by that point all of the

(
n
2

)
the edges

have been queried.

Proof 2: Here is the strategy for the adversary: when the algorithm asks us to flip over a slip of
paper, we return the answer 0 unless that would force the graph to be disconnected, in which case
we answer 1. (It is not important to the argument, but we can figure this out by imagining that all
un-turned slips of paper are 1 and seeing if that graph is connected.) Now, here is the key claim:

Claim: we maintain the invariant that for any un-asked pair (u, v), the graph revealed
so far has no path from u to v.

Proof of claim: If there was, consider the last edge (u′, v′) revealed on that path. We
could have answered 0 for that and kept the same connectivity in the graph by having
an edge (u, v). So, that contradicts the definition of our adversary strategy.

Now, to finish the proof: Suppose an algorithm halts without examining every pair. Consider
some unasked pair (u, v). If the algorithm says “connected,” we reveal all-zeros for the remaining
unasked edges and then there is no path from u to v (by the key claim) so the algorithm is wrong.
If the algorithm says “disconnected,” we reveal all-ones for the remaining edges, and the algorithm
is wrong by definition of our adversary strategy. So, the algorithm must ask for all edges.

7


	Introduction
	Terminology: Upper Bounds and Lower Bounds
	Sorting in the comparison model
	Selection in the comparison model
	Finding the maximum of n elements
	An Adversary Argument
	Finding the second-largest of n elements

	Sorting in the exchange model
	Query models, and the evasiveness of connectivity

