
15-451/651: Design & Analysis of Algorithms May 10, 2021
Solutions for the General Rectangle Problem last changed: May 25, 2021

There are two solutions that I know of. One I’ll call “my” solution, although I think many people
have come up with it. The other is the “folklore” solution that you can find if you google for this
problem. Both use SegTrees, and are used in the framework of a sweepline algorithm.

1 My Solution

As usual, the SegTree implicitly represents an array of values, call them A[] indexed from 0 to
n− 1. In this case A[y] is the number of times that a given y value is covered by rectangles.

In each node of the SegTree we maintain three fields:

The delta[] field represents a constant implicitly added to all A[] the values in the
subtree rooted here.

The minval[] field of a node stores the minimum value of the A[] in the subtree rooted
there. This does not incorporate the adjustments by the deltas in the nodes strictly
above this one.

The minvalCount[] stores the number of leaves below this node whose current A[]

value is equal to the minval of this node. (This is of course not taking the delta[]

values strictly above this node.)

We’ll see below how we can maintain these fields under the updates of inserting and deleting
rectangles as we do the sweepline algorithm. But first I’ll explain how this information can be used
to determine the amount of the current vertical sweepline is coverered by rectangles.

Looking at the root node (node 1) of the SegTree if the minval[1] is zero, then the amount of
length covered by rectangles is n− minvalCount[1] (where n is the number of user variables). If
minval[1] is non-zero, then everything in the entire range from [0, n−1] is covered, so the amount
covered is n.

It remains to show how to maintain the delta[], minval[], and minvalCount[] fields under
updates. The updates take the form of incrementRange(i,j,d) which add d to all the elements
of A[] between i and j.

This is done via some small modifications to the segtree code that was presented in class. Here’s
the key part of the code:

1



int f (int v, int l, int r, int i, int j) {

/* We’re currently at A[v]. 1 <= v < 2*N.

The range [l,r] is that of the current block, wrt user variables [0,n-1].

The range [i,j] is the range of the query, wrt user variables [0,n-1].

The size of the range [l,r] = r-l+1 is a power of 2.

The range [l,r] contains the range [i,j].

This function returns the answer to the query.

*/

int t1, t2, m;

if (l==i && r==j) {

return A[v]; /* the BASE CASE part */

} else {

m = (l+r)/2; /* split [l,r] into [l,m] [m+1,r] */

t1 = (i <= m)? f (LeftChild(v), l, m, i, (min(m,j))): identity;

t2 = (j > m)? f (RightChild(v), (m+1), r, (max(i,(m+1))), j): identity;

return (t1 + t2); /* the GLUE part */

}

}

int RangeSum(int i, int j) {

return f (1, 0, (N-1), i, j);

}

The changes we’re going to make to handle increment range are (1) to add a new parameter d to the
function f(), (2) to update the BASE CASE part and (3) to update the GLUE part. The parameter
d is how much to add to all the values in the given range. It could be a negative number, which
allows subtraction from the range.

Here’s the modified code:

void f (int v, int l, int r, int i, int j, int d) {

int m;

if (l==i && r==j) {

minval[v] = minval[v] + d;

delta[v] = delta[v] + d;

} else {

m = (l+r)/2; /* split [l,r] into [l,m] [m+1,r] */

int lcv = LeftChild(v);

int rcv = RightChild(v);

if (i <= m) {f (lcv, l, m, i, (min(m,j)), d)};

if (j > m) {f (rcv, (m+1), r, (max(i,(m+1))), j, d)};

int mvl = minval[lcv];

int mvr = minval[rcv];

minval[v] = delta[v] + min(mvl, mvr);

if (mvl < mvr) minvalCount[v] = minvalCount[lcv];

else if (mvl > mvr) minvalCount[v] = minvalCount[rcv];

else minvalCount[v] = minvalCount[lcv] + minvalCount[rcv];

}

}

2



void incrementRange(int i, int j, int d) {

f (1, 0, (N-1), i, j, d);

}

int global_non_zero_count() {

if (minval[1] == 0) return n - minvalCount[1]; else return n;

}

Oh, and for the initialization, all the delta[] fields and minval[] fields are zero, and all the
minvalCount[] fields are 1.

2 Folklore Solution

In this solution the values of A[] are the same as in my solution, and implicitly represented in the
same way. Here we maintain just two fields in the nodes.

The delta[] field, which is the same as in my solution.

The coverageLength[] field of a node stores the number of A[] in the subtree rooted
there whose value is > 0, without consideration of the delta[] values above this node.

Again, we can maintain the coverageLength[] fields just by modifying the BASE CASE and the
GLUE parts of the code.

So the the code becomes:

void f (int v, int l, int r, int i, int j, int d) {

int m;

if (l==i && r==j) { /* BASE case */

delta[v] = delta[v] + d;

if (delta[v] > 0) {

coverageLength[v] = r-l+1;

} else if (r > l) {

/* delta[v]==0 and we’re not at a leaf */

coverageLength[v] = coverageLength[LeftChild(v)]

+ coverageLength[RightChild(v)];

} else {

/* delta[v]=0 and we’re at a leaf */

coverageLength[v] = 0;

}

} else { /* GLUE case */

m = (l+r)/2; /* split [l,r] into [l,m] [m+1,r] */

int lcv = LeftChild(v);

int rcv = RightChild(v);

if (i <= m) {f (lcv, l, m, i, (min(m,j)), d)};

if (j > m) {f (rcv, (m+1), r, (max(i,(m+1))), j, d)};

if (delta[v] == 0) {

coverageLength[v] = coverageLength[lcv]

+ coverageLength[rcv];

3



}

}

}

int global_non_zero_count() {

return coverageLength[1];

}

I have not compiled, run, and tested the code above. I want get this out quickly. If you find a
problem let me know.

—Danny Sleator <sleator@cs.cmu.edu>

4


	My Solution
	Folklore Solution

