Lecture 27: Algorithmic
Applications of Embeddings

David Woodruff

* In recommendation systems, want to find users that have similar
buying patterns so can recommend items to users

* In data imputation, may be missing entries in a database and fill them
in based on your “nearest neighbor”

* In a document collection, want to find similar documents to detect
multiple versions of the same article, mirror websites, plagiarism, etc.

 Special case: Closest Pair Problem

« Given n points in RY, find the pair p,g with minimum distance dist(p,q)

_ 2\ 1/2
» dist(p,q) could be (ijl’___,d(pj - q;))
e Can solve in n?d time, but not good if n and d are large

« Divide-and-conquer algorithms depend on 29, too slow if d > log n
e Often referred to as the “Curse of Dimensionality”

* Choose a random s x d matrix S for a small value s < d S

* Replace the n points py, ..., py € R with n points S - py, ..., S - p,, € R

* Compute a function f(S P, S pj) ~ dist(pj, p;) between all pairs S - p; and S - p;
and output the pair p; and p; for which f(S Py, S - pj) is minimal

* Time: O(nd - s + n® - s) if f computable in O(s) time

« Example:ifn=dand s = ©(logn), get O(n*logn) time instead of 0(n?d) = 0(n?)

» Claim: E[|S - p|2] = Ip]

Choose a random s x d matrix S

2
2

1
Let s= O(e—z) for an accuracy parameter constante > 0

1

Vs

1-111-11-111-111
-1-1-11-111-11-11

Each entry of S is 1/\/5 with pr. %, and is —1/\/5 with pr. %

For a point p € RY, the vector S - p € R® is much lower dimensional

Claim: E[|S - pl5] = Ipl5 51 /m
f'/\/——_——/;—_

s /] -1-1-11-111-11-11
Proof: Let S; be the i-th row of S S~/

Since each row of S is identically distributed, E[|S - p|5] = s - E[< S;,p >?]
2

E[<S;,p>?] = = E| (Z] 1,..,d OjPj) 1= z:]1]2 E[thjz] " Pj1 P,

If j; = j, then E[oj, 0j,] = e , otherwise E[oj, 0,] = E[G] E[o;] =0

2
|2

SoE[< S;,p >?%] =2

4
» Claim: Var[|S - p|3] = O(%)

* Proof: Var[|S - pl5] = E[IS - pl5] — E*[|S - pl5]

2
* E[IS- pl2] = E[(Ziz1_s < Sip >2)"1 = Xiy E[< Si,p >%< Syr, p >?]
= Y E[< Si,p >*] + X, E[< Si,p >%] - E[< Sy, p >*]

* Hence,

4
Var[[S - pl5] < S'E[< z Gﬂ’j) 1= S'ZE[GhGizﬁjs%]'Pilpizpjspu
d

i=1,...

4
Varf[|S - pl%] <s- E[(Zj=1,...,d O;Pj) I=s- 2 E[G]'16]'261'30-]'4] " Pj; Pj, Pj3 Pj,

|f E[0j10j20j30j4] # 0, the set {j1,j2,]3,j4} has 4 equal indices, or 2 pairs of equal indices

Ifj1 = j2 = j3 = ja, then E[0;, 0,0,0;,] = 1/s”
O 1 1 2 1
* Contributioniss - (5_2) -Zj pf <s- (5_2) : (Zj plz) = (S—) -Ipls
If say, j; = j, and j3 = j4, then E[oj, 0j,0,0j,] = 1/s*
e Contributioniis s - (s%) - (Xp; ? = (Si) -Ipl5

Thus, Var[|S - p|3] < —Ipl>

4
S

* Chebyshev’s inequality: for a random variable X,
Pr[|X — E[X]| = A(Var[X])z] < 1/A"2

* Proof: Pr [lX — E[X]]| = ?\(Var[X])%]
= Pr|(X — E[X])? = A?Var[X]]| < 1/A?

* Chebyshev’s inequality: for a random variable X,
Pr[|X — E[X]| = A(Var[X])z] < 1/A"2

20 1
. Pr [||s -l —|pl3| = 517|p|§] < . Set's = 400/¢?

- Pr[IS- plZ — Ipl?| = € Ipl3] < Flo

* Chose a random s x d matrix S for s= O(el2

* For an individual point p, Pr[||S -plz — Ipl5 | =2 |p|2] = To0

* Since Sis linear, we can compute S - (p; — pj). Setting p = p; — p; above,

Pr”IS (pi — pJ)I — dist(p;, p))’° ‘>€ dist(pi,)]—100

e But we have n(n2—1)

distinct pairs of points, can’t union bound over all of them!

Letr = O(logn)

Choose r independent s x d matrices S?, ..., ST

f((S*py, S2pj, -, STPY), (S*p;, S*p;, ...,Srp]-)) = mediankzl’_",r|5k(pi — pj)|2
Since |Sk(pi — pj)|22 €1+ (—:)dist(pi, pj)zwith probability 99/100,

f(pi, p;) € (1 % €) - dist(p;, pj)2 with probability 1 — 1/n3

By a union bound, with probability at least 1-1/n, simultaneously for all i,j:
_ 2
f(pi, pj) eE(lte)- dlSt(pi, pj)

* We are given n points pq, ..., Pp € R O
* Choose r = O(log n) independent s x d matrices S, ..., ST, for s= O(ei2
* Compute St - Di, --., S - pj for each i. Total time is O(n d log n /€?)

 Compute f(pi, pj) = mediank=1’___,r|8k(pi — p]-)|22 for each pair i,j,

and output the minimum-valued pair. Total time is O(n? logn /€?)

* Overall time is O(n d log n /e? + n? logn /€?)

Application to Data Streams

* We are given a stream of items iq, 15, ..., 1, from a universe U of size u

* Let f be the frequency vector of length u, so f; is the number of
occurrences of itemi

* Want to approximate |f|3 = Y, f#, which is an indication of the
“skew” of the stream

How much memory does a streaming algorithm need?

. 1
* Choose a random s x u matrix S for s= O(E—2
* |nitialize S - f = 0°

* Given an occurrence of itemi,S-f « S-f+ S - e;, where ¢ is i-th standard
basis vector

* At end of the stream, output |S - f]5 € (1 + €)|f|5 with probability > 99/100
* Can maintain S - f with s= O(Eiz) words of memory

* S can be chosen from a 4-universal hash family, so O(1) words to store S

