
15-451/651: Design & Analysis of Algorithms April 30, 2020
Lecture #27: Algorithmic Applications of Embeddings last changed: April 30, 2020

1 Introduction

We will start by considering the algorithmic task of finding similar items within a database. Variants
of this problem occur in several natural settings such as:

• Recommender Systems: We want to find users that have similar buying patterns so we
can recommend items to them

• Data Imputation: Given some missing entries in a database, we might want to fill them in
based on their “nearest neighbor”

• Document Collection: Finding similar documents allows us to detect multiple versions of
the same article, mirror websites, plagarism etc.

We will consider a special case of this general class of problems, called the closest pair problem.

2 Closest Pair Problem

2.1 Set-Up

In the closest pair problem, we are given n points in Rd, and we want to find the pair of points
(p, q) with minimum distance. We will fix the distance we’re using to to be the Euclidean distance,
defined as

dist(p, q) =

 d∑
j=1

(pj − qj)2
1/2

The brute force approach would involve iterating over all pairs of points, computing the distance,
and outputting the minimum at the end. This takes Θ(n2d) time. This is not great when n is
large, and also not great when d is large.

Recall that we’ve previously seen the 2−D version of the problem, where all points lie in a plane and
we are given their (x, y) coordinates; we also saw an O(n log n) divide-and-conquer algorithm for
this problem (in addition to an O(n) randomized algorithm). These approaches can be generalized
to d dimensions - however, the run-time will scale proportional to 2d, which implies that this is
only efficient when d is in O(log n).

We are instead interested in the case where d could be very large, and we want to focus on
minimizing the dependence on d.

2.2 Embedding Paradigm

The key idea that we will use is to first reduce the dimension of the given points in a way that will
allow us to approximately recover the distance between each pair. Once we have done this, we will
then run the brute-force algorithm on the transformed points to find the closest pair and output
it. That is, we perform the following three steps:

1. Choose a random s× d matrix S for a small value s� d

1

2. Replace the n points p1, · · · , pn ∈ Rd with n points S · p1, · · · , S · pn ∈ Rs

3. Compute a function f(S ·pi, S ·pj) ≈ dist(pi, pj) between all pairs S ·pi and S ·pj and output
the pair pi and pj for which f(S · pi, S · pj) is minimal

The time complexity of the matrix multiplications in step 2 is O(nd · s). Assuming the function f
can be computed in O(s) time, the time complexity of the search in step 3 is O(n2 · s). Assuming
also that we can efficiently generate the matrix in the first step, this gives an overall time complexity
of

O(nd · s+ n2 · s)

For example, if n = d and s = Θ(log n), we get an algorithm with O(n2 log n) run-time, whereas
our brute force algorithm would have taken O(n2d) = O(n3) time.

2.3 A Randomized Embedding

We will now more concretely specify the algorithm that outlined above. Our goal will be to output
a pair of points such that the distance between them is within a factor of (1 + ε) of the overall
minimum distance, where ε > 0 is a constant accuracy parameter (which we can set to be as small
as we want, depending on the level of precision we’d like).

We will let s = O(1
ε2

). The matrix S ∈ Rs×d will be generated as follows: we pick each entry of S
to be 1/

√
s with probability 1/2 and −1/

√
s with probability 1/2. For a point p ∈ Rd, the vector

S · p ∈ Rs is much lower dimensional.

Claim: E[|S · p2|22] = |p|22
Proof: Let Si be the i-th row of S. Since each row of S is identically distributed, E

[
|S.p2|22

]
=

s · E[〈S1, p〉2]. Then

E[〈S1, p〉2] = E

 d∑
j=1

σjpj

2 =
∑
j1,j2

E[σj1σj2] · pj1pj2

If j1 = j2, then E[σj1σj2] = 1/s. Otherwise, E[σj1σj2] = E[σj1]E[σj2] = 0; the first equality follows
from the independence of σj1 and σj2 , and the second equality comes from the fact that E[σi] = 0

for all i. So E[〈S1, p〉2] =
|p|22
s . Therefore, E[|S · p2|22] = |p|22.

Claim: Var[|S · p|22] = O(|p|42)
Proof:

Var[|S · p|22] = E[|S · p|42]− E[|S · p|22]2

Expanding out the first term,

E[|S · p|42] = E

(s∑
i=1

〈Si, p〉2
)2


=
∑
i,i′

E[〈Si, p〉2〈Si′ , p〉2]

=
∑
i

E[〈Si, p〉4] +
∑
i 6=i′

E[〈Si, p〉2]E[〈Si′ , p〉2] by independence of rows i and i′

2

Therefore,

Var[|S · p|22] = E[|S · p|42]− E[|S · p|22]2

=
∑
i

E[〈Si, p〉4] +
∑
i 6=i′

E[〈Si, p〉2]E[〈Si′ , p〉2]− E[|S · p|22]2

≤
∑
i

E[〈Si, p〉4]

= s · E

 d∑
j=1

σjpj

4
= s ·

∑
E[σj1σj2σj4σj4] · pj1pj2pj3pj4

For E[σj1σj2σj3σj4] 6= 0, the set {j1, j2, j3, j4} needs to have either 4 equal indices, or 2 pairs of equal
indices. This is because any index that appears an odd number of times would cause the expectation
to be 0 - for instance, if j1 = j2 = j3 6= j4, then E[σj1σj2σj3σj4] = E[σ3j1]E[σj4] = 0× 0 = 0 (where
we used the independence of σj1 and σj4 to break up the expectation of a product into the product
of expectations). We will now consider the cases where E[σj1σj2σj3σj4] 6= 0.

If j1 = j2 = j3 = j4, then E[σj1σj2σj4σj4] = 1/s2. The total contribution of these terms is then

s · 1

s2
·
∑
j

p4j ≤ s ·
1

s2
·

∑
j

p2j

2

=
1

s
· |p|42

If j1 = j2 and j3 = j4, then E[σj1σj2σj4σj4] = 1/s2. The contribution of these terms is then

s · 1

s2
·

∑
j

p2j

2

=
1

s
· |p|42

The case j1 = j3 and j2 = j4, and the case j1 = j4 and j2 = j3, are exactly the same.

Therefore, by summing the contributions from all 4 cases, we get

Var[|S · p|22] =
4

s
|p|42 = O(|p|42)

2.4 Applying Chebyshev’s Bound

Recall Markov’s inequality on random variables X:

Pr[X ≥ cE[x]] ≤ 1

c

We can use Markov’s inequality to derive a stronger bound known as Chebyshev’s inequality, which
states that

Pr[|X − E[X]| ≥ λ(Var[X])1/2] ≤ 1

λ2

Proof:

Pr[|X − E[X]| ≥ λ(Var[X])1/2] = Pr[(X − E[X])2 ≥ λ2(Var[X])] ≤ 1

λ2

Here, the final step comes from applying Markov’s inequality.

3

We now apply Chebyshev’s inequality to get

Pr[|X − E[X]| ≥ λ(Var[X])1/2] ≤ 1

λ2

Pr[||S · p|22 − |p|22| ≥
20√
s
|p|22] ≤

1

100

Pr[||S · p|22 − |p|22| ≥ ε|p|22] ≤
1

100

The last line follows by setting s = 400
ε2

Thus, we have for any point p, Pr[||S · p|22 − |p|22| ≥ ε|p|22] ≤ 1
100 .

To compute S(p1 − p2) for a pair of points p1, p2, notice that since we have Sp1 and Sp2 already
computed, we can just compute S(p1− p2) = Sp1−Sp2. Therefore, we have for any pair of points,

Pr[||S · (p1 − p2)|22 − |(p1 − p2)|22| ≥ ε|(p1 − p2)|22] ≤
1

100

Pr[||S · (p1 − p2)|22 − dist(p1, p2)2| ≥ ε · dist(p1, p2)2] ≤
1

100

This is great, but we’re not done yet. Remember that we have
(
n
2

)
pairs of points; taking the union

bound won’t be enough to guarantee that we succeed with any constant probability.

2.5 Amplifying the Probability

Instead, we generate r = O(log n) matrices S1, S2, . . . Sr independently. Then, for a pair of points
p1, p2, we can take the median of Si(p1−p2); in other words, we choose our function to be f(p1, p2) =
mediani=1,2,...,r|Si(p1 − p2)|22.
Previously, for any pair of points p1, p2, we had that |S · (p1 − p2)|22 ∈ (1 ± ε)dist(p1, p2)2 with
probability 99

100 . Now,

Pr[|f(p1, p2) · (p1 − p2)|22 − dist(p1, p2)2| ≥ ε · dist(p1, p2)2] ≤
1

n3

by picking an appropriate r. And thus, f(p1, p2) ∈ (1± ε)dist(p1, p2)2 with probability 1− 1
n3 .

Over
(
n
2

)
pairs of points, by the union bound, we have ∀i, j, f(pi, pj) ∈ (1 ± ε)dist(pi, pj)2 with

probability 1− 1
n . The time complexity overall is O

(
nd log

(
n
ε2

)
+ n2 log

(
n
ε2

))
2.6 Applications to Data Streams

Suppose we had a stream of elements from universe U where |U | = u and a frequency vector f of
length u where fi is the number of times element i occurs in the stream. Now further suppose we
want to compute |f |22 =

∑
i f

2
i which is called the skew of the stream. How could we approximate

this?

We start by choosing a random s× u matrix S for s = O(1
ε2

). We initialize a vector v of size s as
the 0 vector. For each element in the stream, we update v = v + S · ei where ei is the ith standard
basis vector in Ru (i.e. an all zero vector except the ith index). At the end, we have the guarantee
that |s|22 ∈ (1± ε)|f |22 with high probability.

A further optimization could be applied where we generate the entries of S using a hash function
h s.t. Sij = h(i, j) = {−1, 1}, where h is drawn from a 4-universal hash family. This way, we only

4

need to store the hash function in memory instead of the entire matrix, but we can still obtain the
same guarantees as before. Further reading on how 4-universal hash functions can be expressed in
O(log u) bits can be found at https://www.sciencedirect.com/science/article/pii/S0022000097915452.

5

https://www.sciencedirect.com/science/article/pii/S0022000097915452

	Introduction
	Closest Pair Problem
	Set-Up
	Embedding Paradigm
	A Randomized Embedding
	Applying Chebyshev's Bound
	Amplifying the Probability
	Applications to Data Streams

