
Lecture 26: The Fast

Fourier Transform

David Woodruff

Thanks to Ryan O’ Donnell for many slides

Polynomial multiplication

Let P(x) and Q(x) be polynomials of degree < N.

Assumed in “Coefficients Representation”,

P(x) = a0 + a1 x + a2 x2 + ∙∙∙ + aN−1 xN−1

Q(x) = b0 + b1 x + b2 x2 + ∙∙∙ + bN−1 xN−1

Let R(x) = P(x)∙Q(x), of degree < 2N.

Task is to get R(x) in Coefficients Representation.

Naively: takes to compute R(x)

Polynomial multiplication

Let P(x) and Q(x) be polynomials of degree < N.

Assumed in “Coefficients Representation”,

Let R(x) = P(x)∙Q(x), of degree < 2N.

Task is to get R(x) in Coefficients Representation.

If only everything were in

“Values Representation”

instead…

Polynomial multiplication

Let P(x) and Q(x) be polynomials of degree < N.

Assumed in “Coefficients Representation”,

Let R(x) = P(x)∙Q(x), of degree < 2N.

Task is to get R(x) in Coefficients Representation.

If only we knew

P(1), P(2), …, P(2N),

Q(1), Q(2), ..., Q(2N),

R(1), R(2), ..., R(2N)

uniquely
determines R(x)
by interpolation

A Divide and Conquer Approach
Want to evaluate P(x) at in O(N log N) time

Write P(x) = where

contains the even terms and contains the odd terms

Example:

Why is this useful?

A Divide and Conquer Approach

Want to evaluate P(x) at in O(N log N) time

Write P(x) = where

contains the even terms and contains the odd terms.

If my points are ,

I just need the evaluations of and at

with solution T(2N) = O(N log N), are we done?

We need points that can be recursively partitioned into +/-

Use the Complex Roots of Unity

Write P(x) = where

contains the even terms and contains the odd terms.

Choose 2N points to be the complex 2N-th roots of unity

Key fact: the 2N squares of the 2N-th roots of unity are:

first the N N-th roots of unity, then again the N N-th roots of unity

with solution T(2N) = O(N log N) !!

What are the complex N-th roots of unity?

Discrete Fourier Transform (& Inverse)

Let N be a power of 2.

is the set of N

“complex roots of unity” that I’ll describe shortly.

Let P(x) be a polynomial of degree N−1.

P’s values on SN P’s coefficients

P’s coefficients P’s values on SN

IDFTN

DFTN

interpolation

evaluation

Fast Fourier Transform

P’s values on SN P’s coefficients

P’s coefficients P’s values on SN

IDFTN

DFTN

interpolation

evaluation

A recursive algorithm for

DFTN and IDFTN that

uses only O(N log N)

arithmetic operations.

Multiplying polynomials with the FFT

Let P(x), Q(x) be polynomials of degree < N.

Want R(x) = P(x)∙Q(x), which has degree < 2N.

1. Use DFT2N to get P(w), Q(w) for all w S2N d

2. Multiply pairs, getting R(w) for all w S2N d

3. Use IDFT2N to get R’s coefficients

P’s values on SN P’s coefficients

P’s coefficients P’s values on SN

IDFTN

DFTN

interpolation

evaluation

Multiplying polynomials with the FFT

Let P(x), Q(x) be polynomials of degree < N.

Want R(x) = P(x)∙Q(x), which has degree < 2N.

1. O(N log N) arithmetic ops

2. O(N) arithmetic ops

3. O(N log N) arithmetic ops

O(N log N) arithmetic ops

Time:

1. Use DFT2N to get P(w), Q(w) for all w S2N d

2. Multiply pairs, getting R(w) for all w S2N d

3. Use IDFT2N to get R’s coefficients

Multiplying polynomials with the FFT

Can multiply two degree-N polynomials

using O(N log N) arithmetic operations.

If each coefficient is a word of O(log N) bits, can

multiply the polynomials in O(N log N) time.

* Requires proving that you can compute the Nth roots of unity to

O(log N) bits of precision in O(N log N) time, and that this precision

is sufficient. This is fairly easy to prove, but also boring to prove.

The complex numbers

z = .6−.8i
.6

−.8

|z| = magnitude of z

= 1, in this case

The complex numbers

complex #’s

of magnitude 1

θ≈53°

defined by

angle θ from

x-axis

Key Rule:

Multiplication by z = rotation by θ.

z = .6−.8i

The complex numbers

Key Rule:

Multiplication by z = rotation by θ.

z2 = −.28−.96i

θ≈53°

z = .6−.8i

complex #’s

of magnitude 1

defined by

angle θ from

x-axis

Unity

1 +0i
(angle θ = 0)

Square Roots of Unity

1−1
(angle θ = 180°)

Cube Roots of Unity

1

of a circle= rotation by

Cube Roots of Unity

1

of a circle= rotation by

of a circle= rotation by

=

4th Roots of Unity

1

of a circleby

= −i

= rotation

8th Roots of Unity

16th Roots of Unity

Discrete Fourier Transform (& Inverse)

Let N be a power of 2.

Let .

Let P(x) be a polynomial of degree N−1.

P’s values on SN P’s coefficients

P’s coefficients P’s values on SN

IDFTN

DFTN

interpolation

evaluation

Discrete Fourier Transform (& Inverse)

Let N be 8, and let

Let P(x) be a polynomial of degree 7.

Let .

P’s values on S8 P’s coefficients

P’s coefficients P’s values on S8

IDFT8

DFT8

interpolation

evaluation

Evaluation at

Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7

Since ω8 = 1, we can reduce all exponents mod 8.

Evaluation at

Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7

DFT8[j,k] =
DFT8 (0 ≤ j, k ≤ 7)ωjk mod 8

Evaluation at

Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7• 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

Multiplication modulo 8 table

DFT8[j,k] = (0 ≤ j, k ≤ 7)ωjk mod 8

Evaluation at

Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7

DFT8[j,k] = (0 ≤ j, k ≤ 7)ωjk mod 8

Evaluation at

Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7

DFT8 ∙

Interpolation?

Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7.

Given P(1), P(ω), …, P(ω7), how to get a0, a1, …, a7?

DFT8 ∙

Interpolation?

Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7.

Given P(1), P(ω), …, P(ω7), how to get a0, a1, …, a7?

DFT8
−1 ∙

also known as

IDFT8

Interpolation?

Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7.

Given P(1), P(ω), …, P(ω7), how to get a0, a1, …, a7?

DFT8
−1 ∙

also known as

IDFT8

P’s values on SN P’s coefficients

P’s coefficients P’s values on SN

IDFTN

DFTN

interpolation

evaluation

Interpolation?

Say P(x) = a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6+a7x7.

Given P(1), P(ω), …, P(ω7), how to get a0, a1, …, a7?

DFT8
−1 ∙

also known as

IDFT8

DFT versus IDFT

Question:

We know what matrix DFT8 is.

What is its inverse matrix, IDFT8?

Answer:

It’s extremely similar to DFT8.

DFT8IDFT8

DFTN[j,k] = (0 ≤ j, k < N, ω = ωN is Nth root of unity)ωjk mod N

IDFTN[j,k] = ω−jk mod N

DFT8IDFT8

Proof illustration.

We’ll show the product =

DFT8IDFT8

Proof by picture.

We’ll show the product =

DFT8IDFT8

Proof by picture.

We’ll show the product =

DFT8IDFT8

Proof by picture.

We’ll show the product =

DFT8IDFT8

Proof by picture.

We’ll show the product =

DFT8IDFT8

Proof by picture.

We’ll show the product
average

is 0

DFT8IDFT8

Proof by picture.

We’ll show the product =
average

is 0

DFT8IDFT8

Proof by picture.

We’ll show the product =
average

is 0

DFT8IDFT8

Proof by picture.

We’ll show the product =
average

is 0

DFT8IDFT8

Proof by picture.

We’ll show the product =
average

is 0

DFT8IDFT8

Proof by picture.

We’ll show the product =
average

is 0

DFT8IDFT8

Proof by picture.

We’ll show the product =
average

is 0

DFT8IDFT8

Proof by picture.

We’ll show the product =

Well, looks pretty true.

See the notes for a

Formal proof.

DFTN ∙

Last piece of the puzzle: FFT

Computing this in O(N log N) ops

DFTN ∙

Claim: DFTN reduces to 2 applications of DFTN/2,

plus O(N) additional operations.

T(N) = 2T(N/2) + O(N) T(N) = O(N log N)

Claim: DFT8 reduces to 2 applications of DFT4,

plus “O(8)” additional operations.

Claim: DFT8 reduces to 2 applications of DFT4,

plus “O(8)” additional operations.

Claim: DFT8 reduces to 2 applications of DFT4,

plus “O(8)” additional operations.

Claim: DFT8 reduces to 2 applications of DFT4,

plus “O(8)” additional operations.

ditto

Claim: DFT8 reduces to 2 applications of DFT4,

plus “O(8)” additional operations.

ditto

Claim: DFT8 reduces to 2 applications of DFT4,

plus “O(8)” additional operations.

ditto

Claim: DFT8 reduces to 2 applications of DFT4,

plus “O(8)” additional operations.

ditto

Claim: DFT8 reduces to 2 applications of DFT4,

plus “O(8)” additional operations.

ditto

Claim: DFT8 reduces to 2 applications of DFT4,

plus “O(8)” additional operations.

Computable with 1

application of DFT4

to (a0,a2,a4,a6),

and some copying.

Now to get this,

apply the above to

(a1,a3,a5,a7),

and then multiply the

jth row by ωj, for 0 ≤ j < 7.

Total: 2 applications of DFT4,

plus “O(8)” more operations.

P(x) =

Summary

• Can multiply two polynomials of degree < N

in O(N log N) time.

• DFTN reduces Coefficients Representation to

Values Representation over roots of unity.

• FFTN computes DFTN (and inverse)

in O(N log N) time.

• DFTN has many uses in CS & Engineering.

