Matrix and Integer Multiplication

David Woodruff CMU

(Thanks to Carl Kingsford for some of these slides)

Matrix Multiplication

If $r_1 = c_1 = r_2 = c_2 = N$, this standard approach takes $\Theta(N^3)$:

- For every row \vec{r} (N of them)
- ▶ For every column \vec{c} (N of them)
- ▶ Take their inner product: $r \cdot c$ using N multiplications

Matrix Multiplication Properties

- In general AB ≠BA
- If C is in R^{mxt}, then
 - (AB) C = A(BC)
 - A(B+C) = AB + AC

Can we multiply faster than $\Theta(N^3)$?

For simplicity, assume $N=2^n$ for some n. The multiplication is:

$$C_{11} = A_{11}B_{11} + A_{12}B_{21}$$

$$C_{21} = A_{21}B_{11} + A_{22}B_{21}$$

$$C_{12} = A_{11}B_{12} + A_{12}B_{22}$$

$$C_{22} = A_{21}B_{12} + A_{22}B_{22}$$

Uses 8 multiplications

$$T(N) = 8T(N/2) + c N^2$$
 Master Formula => $T(N) = Theta(N^3)$

Strassen's Algorithm

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \times \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

$$P_1 = (A_{11} + A_{22})(B_{11} + B_{22})$$
 $C_{11} = P_1 + P_4 - P_5 + P_7$
 $P_2 = (A_{21} + A_{22})B_{11}$ $C_{12} = P_3 + P_5$
 $P_3 = A_{11}(B_{12} - B_{22})$ $C_{21} = P_2 + P_4$
 $P_4 = A_{22}(B_{21} - B_{11})$ $C_{22} = P_1 - P_2 + P_3 + P_6$
 $P_5 = (A_{11} + A_{12})B_{22}$
 $P_6 = (A_{21} - A_{11})(B_{11} + B_{12})$
 $P_7 = (A_{12} - A_{22})(B_{21} + B_{22})$ Uses only 7 multiplications!

Since the submatrix multiplications are the expensive operations, we save a lot by eliminating one of them.

Apply the above idea recursively to perform the 7 matrix multiplications contained in P_1, \ldots, P_7 .

Need to show how much savings this results in overall.

Recurrence

$$T(N) = T(2^n) = \underbrace{7T(2^n/2)}_{\text{recursive} \times} + \underbrace{c4^n}_{\text{additions}}$$

Solving the recurrence:

$$\frac{T(2^n)}{7^n} = \frac{7T(2^{n-1})}{7^n} + \frac{c4^n}{7^n} = \frac{T(2^{n-1})}{7^{n-1}} + \frac{c4^n}{7^n}$$

The red term is same as the left-hand side but with n-1, so we can recursively expand:

$$\frac{T(2^n)}{7^n} = \gamma + \sum_{i=1}^n \frac{c4^i}{7^i} = \gamma + c\sum_{i=1}^n \left(\frac{4}{7}\right)^i \le \alpha \quad \text{for some constants } \alpha, \ \gamma$$

So:

$$T(2^n) \le 7^n \alpha = \alpha 2^{n \log_2(7)} = \alpha N^{2.807...} = O(N^{2.807...})$$

Space Complexity of Strassen's Algorithm

- Use the same memory for each recursive call
- Start with memory for the two input matrices and output matrix
- Allocate W $\left(\frac{n}{2}\right)$ memory for recursive computation of P_1
 - When done, add the output to \mathcal{C}_{11} and \mathcal{C}_{22}
 - Then *reuse* your $W\left(\frac{n}{2}\right)$ memory to compute each of P_2, \dots, P_7
- Let W(n) be the memory of Strassen's algorithm to multiply n x n matrices
- W(n) = $3n^2 + W\left(\frac{n}{2}\right)$

Bounding the Space Complexity

$$W(n) = 3n^2 + W\left(\frac{n}{2}\right)$$

$$W(n) \le 4n^2$$

Fast Matrix Multiplication: Practice

Implementation issues.

- Sparsity.
- Caching effects.
- Numerical stability.
- Odd matrix dimensions.
- Crossover to classical algorithm around n = 128.

Common misperception. "Strassen is only a theoretical curiosity."

- Apple reports 8x speedup on G4 Velocity Engine when $n \approx 2,500$.
- Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues, SVD,

Fast Matrix Multiplication: Theory

- \mathbb{Q} . Multiply two 2-by-2 matrices with 7 scalar multiplications?
- A. Yes! [Strassen 1969]

$$\Theta(n^{\log_2 7}) = O(n^{2.807})$$

- Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
- A. Impossible. [Hopcroft and Kerr 1971]

$$\Theta(n^{\log_2 6}) = O(n^{2.59})$$

- Q. Two 3-by-3 matrices with 21 scalar multiplications?
- A. Also impossible.

$$\Theta(n^{\log_3 21}) = O(n^{2.77})$$

Begun, the decimal wars have. [Pan, Bini et al, Schönhage, ...]

■ Two 20-by-20 matrices with 4,460 scalar multiplications.

$$O(n^{2.805})$$

■ Two 48-by-48 matrices with 47,217 scalar multiplications.

$$O(n^{2.7801})$$

■ A year later.

$$O(n^{2.7799})$$

■ December, 1979.

$$O(n^{2.521813})$$

■ January, 1980.

$$O(n^{2.521801})$$

Fast Matrix Multiplication: Theory

Fig. 1. $\omega(t)$ is the best exponent announced by time τ .

Best known. $O(n^{2.376})$ [Coppersmith-Winograd, 1987]

Conjecture. $O(n^{2+\epsilon})$ for any $\epsilon > 0$.

Caveat. Theoretical improvements to Strassen are progressively less practical.

Summary

- Strassen first to show matrix multiplication can be done faster than $O(N^3)$ time.
- Strassen's algorithm gives a performance improvement for large-ish N, depending on the architecture, e.g. N > 100 or N > 1000.
- Strassen's algorithm isn't optimal though! Over the years it's been improved:

Authors	Year	Runtime
Strassen	1969	$O(N^{2.807})$
: Coppersmith & Winograd Stothers	1990 2010	$O(N^{2.3754})$ $O(N^{2.3736})$
Williams	2011	$O(N^{2.3727})$

► Conjecture: an $O(N^2)$ algorithm exists.

Karatsuba's Algorithm for Integer Multiplication

Complex Multiplication

Complex multiplication. (a + bi) (c + di) = x + yi.

Grade-school.
$$x = ac - bd$$
, $y = bc + ad$.

Q. Is it possible to do with fewer multiplications?

A. Yes. [Gauss]
$$x = ac - bd$$
, $y = (a + b)(c + d) - ac - bd$.

3 multiplications, 5 additions

Remark. Improvement if no hardware multiply.

Integer Multiplication

$$\begin{array}{c|c}
 & 10101110 \\
 \times & 01011101 \\
\hline
 & 10101110 \\
 & 10101110 \\
 & 10101110 \\
 & 10101110 \\
\hline
 & 10101110
\end{array}$$

$$\begin{array}{c}
 n \text{ numbers of } n \text{ bits each} \\
 O(n^2) \text{-time}
\end{array}$$

$$\begin{array}{c}
 111111100110110
\end{array}$$

Start similar to Strassen's algorithm, breaking the items into blocks (m = n/2):

$$x = x_1 2^m + x_0$$

$$y = y_1 2^m + y_0$$

Then:

$$xy = (x_1 2^m + x_0) (y_1 2^m + y_0) = x_1 y_1 2^{2m} + (x_1 y_0 + x_0 y_1) 2^m + x_0 y_0$$

Breaking x and y into blocks

 $x_1 2^m$ can be computed via "shift right by m"

So this multiplication only costs O(n) operations.

$$T(n) = 4T(n/2) + O(n)$$
 Master Formula => $T(n) = Theta(n^2)$

4 Multiplications → 3 Multiplications

$$xy = x_1y_12^{2m} + (x_1y_0 + x_0y_1)2^m + x_0y_0$$

We can write two multiplications as one, plus some subtractions:

$$x_1y_0 + x_0y_1 = (x_1 + x_0)(y_1 + y_0) - x_1y_1 - x_0y_0$$

But what we need to subtract is exactly what we need for the original multiplication!

- $p_0 = x_0 y_0$
- $p_1 = x_1 y_1$
- $p_2 = (x_1 + x_0)(y_1 + y_0) p_1 p_0$

$$xy = p_1 2^{2m} + p_2 2^m + p_0$$

Analysis

Assume $n = 2^k$ for some k (this is the common case when the integers are stored in computer words):

$$T(2^{k}) = 3T(2^{k-1}) + c2^{k}$$

$$\frac{T(2^{k})}{3^{k}} = \frac{T(2^{k-1})}{3^{k-1}} + \frac{c2^{k}}{3^{k}}$$

$$= \gamma + c \sum_{i=1}^{k} \frac{2^{i}}{3^{i}}$$

$$\leq \beta \quad \text{for some constants } \gamma, \beta$$

(γ handles the constant work for the base case.) So:

$$T(2^k) \le \beta 3^k = \beta (2^k)^{\log_2(3)} = \beta n^{\log_2(3)} = O(n^{1.58...})$$

Implementation Details

- Karatsuba is usually faster than naïve multiplication for 320-640 bit numbers
- $p_2 = (x_1 + x_0)(y_1 + y_0) p_1 p_0$
- $(x_1 + x_0)$ and $(y_1 + y_0)$ could be a number of size 2^{m+1} , which might need an extra bit
- But note $p_2 = (x_0 x_1)(y_1 y_0) + p_1 + p_0$
- We might need a bit to encode the sign of $(x_0 x_1)$ and of $(y_1 y_0)$
- You can instead record the sign, and multiply the absolute values of these numbers
- One advantage is the final computation of p_2 now involves no subtractions

Toom-Cook Multiplication

- Karatsuba's algorithm reduces 4 multiplications to 3
 - Runs in $\Theta(n^{(\log 3)/(\log 2)}) = \Theta(n^{1.58})$ time
- The Toom-3 algorithm splits numbers into 3 parts and reduces 9 multiplications to 5
 - Runs in $\Theta(n^{(\log 5)/(\log 3)}) = \Theta(n^{1.46})$ time
- The Toom-k algorithm splits numbers into k parts
 - Runs in $\Theta(c(k) n^{\frac{\log(2k-1)}{\log(k)}})$
 - Optimizing gives $\Theta(n2^{\sqrt{(2\log n)}}\log n)$ time

What's Really Going On?

•
$$x = x_1 \cdot 2^m + x_0$$
 and $y = y_1 \cdot 2^m + y_0$

- $P(z) = x_1 z + x_0$ and $Q(z) = y_1 z + y_0$
- $x \cdot y = P(2^m) \cdot Q(2^m)$, so integer multiplication can be solved with polynomial multiplication!
- Karatsuba's algorithm is a special case of a fast algorithm for polynomial multiplication. We will discuss polynomials more the next few lectures.
- Using the Fast Fourier Transform to multiply polynomials:
 - Schonage-Strassen algorithm for integer multiplication: O(n log n log log n) time
 - Harvey-van der Hoeven algorithm for integer multiplication: O(n log n) time

Facts About Polynomials

- $A(x) = \sum_{i=0,\dots,n-1} a_i x^i$ is a degree n-1 polynomial
- A root of a polynomial is a number r for which A(r) = 0
- Fundamental theorem of algebra: a degree-d polynomial has at most d roots
 - Implies any distinct degree d polynomials A(x) and B(x) can evaluate to the same value on at most d different values x. Why?
 - A(x) B(x) has degree at most d, so can have at most d roots
 - A degree d polynomial is determined by its evaluations on d distinct points $x_1, ..., x_d$

Polynomials and Fast Fourier Transform (FFT)

Polynomials

$$A(x) = \sum_{i=0}^{n-1} a_i x^i$$
 a polynomial of degree n-1

Evaluate at a point x = b in time?

Polynomials

$$A(x) = \sum_{i=0}^{n-1} a_i x^i$$
 a polynomial of degree n-1

Evaluate at a point x = b in time O(n): Horner's rule: Compute $a_{n-1} x$,

$$a_{n-2} + a_{n-1}x^2$$
,
 $a_{n-3} + a_{n-2}x + a_{n-1}x^3$

Each step O(1) operations, multiply by and add coefficient.

There are \leq n steps. \rightarrow O(n) time

Summing Polynomials

$$\sum_{i=0}^{n-1} a_i x^i$$

a polynomial of degree n-1

$$\sum_{i=0}^{n-1} b_i x^i$$

a polynomial of degree n-1

$$\sum_{i=0}^{n-1} c_i x^i$$

the sum polynomial of degree n-1

$$c_i = a_i + b_i$$

Time O(n)

How to multiply polynomials?

$$\sum_{i=0}^{n-1} a_i x^i$$
 a polynomial of degree n-1

$$\sum_{i=0}^{n-1} b_i x^i$$
 a polynomial of degree n-1

$$\sum_{i=0}^{2n-2} c_i x^i$$
 the product polynomial of degree n-1

$$c_i = \sum_{j \le i} a_j b_{i-j}$$

Trivial algorithm: time O(n²) FFT gives time O(n log n)

Polynomial representations

Coefficient:
$$(a_0, a_1, a_2, \dots a_{n-1})$$

Point-value: have points x_0 , x_1 , ... x_{n-1} in mind Represent polynomials A(X) by pairs $\{(x_0, y_0), (x_1, y_1), ...\}$ $A(x_i) = y_i$

To multiply in point-value, just need O(n) operations.

Approach to polynomial multiplication:

A, B given as coefficient representation

- 1) Convert A, B to point-value representation
- 2) Multiply C = AB in point-value representation
- 3) Convert C back to coefficient representation

2) done esily in time O(n)

FFT allows to do 1) and 3) in time O(n log n).

Note: For C we need 2n-1 points; we'll just think "n"