4. (20 pts) Smallest Enclosing Circle

In this problem we’ll develop an algorithm for computing the smallest enclosing circle
of a set P of n > 2 distinct points. This is the circle of minimum radius that contains
the points of P. It is not hard to prove that the solution circle C'(P) is unique, and
that C'(P) has two or more points of P on its boundary. In the case in which there are
just two points of P on C(P), the segment between those points is a diameter of the
circle. If three points a, b, and ¢ (and possibly others) are on the boundary of C(P),
then C'(P) is the unique circle through a, b, and c.

In the example on the left, only two points are on the smallest enclosing circle. On the
right we’ve added a new point (colored red) to the set. The new point was outside of
the previous smallest enclosing circle. The new solution has three points on the circle,

including the new red point.

Here’s a randomized incremental algorithm for computing the smallest enclosing circle

of a list of n points:

SEC([phan cee 7pn]) = {
Randomly permute the input points, so [py, ..., py]

is a random permutation of the given points.

Let C' be the smallest circle enclosing p; and ps.
(This is just the circle for which p; and ps form a diameter.)

for i =3 ton do
// at this point C'is the smallest enclosing circle for [py, ..., p;_1]

if p; is not in C then C' = SEC1([py, ..., pi])
done

return C'

}

Here we've made use of a function SEC1([p1,p2,...,p;]). This is an algorithm that
computes the smallest enclosing circle of [py,...,p;| given the information that p; is
one of the points on the boundary of the smallest enclosing circle of [p1,...,p;]. For
our purposes here, you need not worry about how to implement this function.

(continued on next page)

(a) Prove that in the context in which SEC1() is called, the smallest enclosing circle
of [p1,pa, ..., p;| must have p; on its boundary.

T4 Pi is net en The bounc/ar‘y o
C(Ernpl) then CCER-pf)= CLUER-OY),
Since Yhese are npt eguq// we Koo
Pr vt be on e /oauwda/\/ s T
C(EP,-P3)

(b) Assume we could implement SEC1([p1, ps, ..., p;]) to run in expected O(i) time!.
Prove that the algorithm SEC([p1, ps, . .., ps)) runs in expected O(n) time. (Note
that randomly permuting n points is O(n) time, and testing if a given point is in
a given circle is O(1) time.)

Use chkwards anaelyss. VU/LGV\l
we delete o random poiut, whats
the Pro hab: (it That T Cavees *he
SEC Fo c/Lanye({ TL there Q'A,e'
Jour or Mmore Po?:ﬁs on Tho S‘,?V‘C/(DQ
bwhcfar‘y +han this Probqb;//%y /3) :
IWC Lhere arp thrte then Ythe ?"02-

—

) S 2 T £ Fhere are fowp YTs T oo
, / 2
So ?nL ol cases tr ot mosr 5+

Th@f‘@“ﬂor\e the @X}e(ﬁ[‘@c/ (05T o1~

removing Pi st most %-OﬁF oll).

1To give a complete expected linear-time algorithm, SEC1() can analogously be expressed in terms SEC2()
which is told two of the list of input points are on the circle boundary. This, finally, is easy to implement in
O(i) time.

8

