
451/651 Lecture 16 – NP-completeness

Outline
I Reductions and expressiveness
I Formal definitions: decision problems, P and NP.
I Circuit-SAT and 3-SAT
I Examples of showing NP-completeness.

Reductions and Expressiveness

In the last few lectures we have seen:
I Bipartite matching can be solved with a max flow algorithm.
I The max flow problem can be solved by a linear programming

algorithm.

In this lecture we expand the idea of a reduction from one problem
to another. And we expand the application of reductions to prove
lower bounds on problem difficulty.

Polynomial Time

Definition: We say that an algorithm runs in Polynomial Time
if, for some constant c, its running time is O(nc), where n is the
size of the input.

Input size: size of the problem description in bits.

Think about why the basic Ford-Fulkerson algorithm is
not a polynomial-time algorithm for network flow when
edge capacities are written in binary, but both of the
Edmonds-Karp algorithms are polynomial-time.

Reducibility

Definition: A problem A is poly-time reducible to problem B
(written as A ≤p B) if we can solve problem A in polynomial time
given a polynomial time black-box algorithm for problem B.1
Problem A is poly-time equivalent to problem B (A =p B) if
A ≤p B and B ≤p A.

Think about the examples mentioned above – bipartite matching,
max flow, linear programming.

1You can loosely think of A ≤p B as saying “A is no harder than B, up to
polynomial factors.”

Decision Problems

We consider decision problems, whose answer is YES or NO.

E.g., “Does the given network have a flow of value at least k?”

E.g., “Does the given graph have a 3-coloring?”

For such problems, we split all instances into two categories:
YES-instances (whose correct answer is YES) and NO-instances
(whose correct answer is NO). We put any ill-formed instances into
the NO category.

Karp Reductions

Definition: Karp reduction (aka Many-one reduction) from
problem A to problem B: To reduce problem A to problem B we
want a function f that maps arbitrary instances of A to instances
of B such that:
1. if x is a YES-instance of A then f (x) is a YES-instance of B.
2. if x is a NO-instance of A then f (x) is a NO-instance of B.
3. f can be computed in polynomial time.

Superficially this seems more limited than the B ≤p A reductions
we defined earlier. But it’s cleaner and simpler and is not known to
be different.

Defintion of P

We can now define the complexity classes P and NP. These are
both classes of decision problems. (Sets of sets of strings.)

Definition: P is the set of decision problems solvable in
polynomial time.

E.g., the decision version of the network flow problem: “Given a
network G and a flow value k, does there exist a flow ≥ k?”
belongs to P.

The Concept of NP

Informally NP is the class of problems for which any YES-instance
can be efficiently checked if given a proper hint.

The Traveling Salesperson Problem asks: “Given a
weighted graph G and an integer k, does G have a tour that visits
all the vertices and has total length at most k?”

If someone gave us such a tour we could easily check if it satisfied
the desired conditions. Therefore it’s in NP.

The 3-Coloring problem asks: “Given a graph G , can vertices
be assigned colors red, blue, and green so that no two neighbors
have the same color?”

Again, to check a proposed solution is easy. Therefore it’s in NP.

Formal Definition of NP

Definition: NP is the set of decision problems that have
polynomial-time verifiers. Specifically, problem Q is in NP if there
is a polynomial-time algorithm V (I,X) such that:

I If I is a YES-instance, then there exists X such that
V (I,X) = YES.

I If I is a NO-instance, then for all X , V (I,X) = NO.
Furthermore, X should have length polynomial in size of I (since
we are really only giving V time polynomial in the size of the
instance, not the combined size of the instance and solution).
The question: Does NP =P is THE major unsolved problem in
theoretical computer science. We won’t talk about it here.

Definition of NP-Complete

Loosely speaking, NP-complete problems are the “hardest”
problems in NP, if you can solve them in polynomial time then you
can solve any other problem in NP in polynomial time. Formally,

Definition: Problem Q is NP-complete if:
1. Q is in NP, and
2. For any other problem Q′ in NP, Q′ ≤p Q.

So if Q is NP-complete and you could solve Q in polynomial time,
you could solve any problem in NP in polynomial time. If Q just
satisfies part (2) of this definition, then it’s called NP-hard.

Circuit-SAT – the First NP-complete problem

Circuit-SAT: Input: an acyclic circuit C of NAND gates with a
single output. Answer: YES if there is a setting of the inputs that
causes C to output 1? NO otherwise.

Theorem: Circuit-SAT is NP-complete.

Proof: Wave hands vigorously. (For more on how to wave your
hands, read the lecture notes.)

3-SAT – the Second NP-complete problem

3-SAT: Given: a CNF formula (AND of ORs) over n variables
x1, . . . , xn, where each clause has at most 3 variables in it. E.g.,
(x1 ∨ x2 ∨ x̄3) ∧ (x̄2 ∨ x3) ∧ (x1 ∨ x3) ∧ Answer YES if there
exists an assignment to the variables that satisfies the formula,
output NO otherwise.

The literals of each conjunction are distinct. (Delete dupliates.)

Theorem: Circuit-SAT ≤p 3-SAT.

Proof: (Coming up in a moment)
Hence 3-SAT is NP-complete. Why?

Circuit-SAT ≤p 3-SAT implies 3-SAT is
NP-complete

Proof that Circuit-SAT ≤p 3-SAT

Proving NP-completeness in Two Easy Steps
If you want to prove that problem Q is NP-complete, you need to
do two things:

1. Show that Q is in NP.
2. Choose some NP-hard problem P to reduce from. This

problem could be 3-SAT or Clique or · · · any of the zillions
of NP-hard problems known.

Now you want to reduce from P to Q. In other words, given
any instance I of P, show how to transform it into an instance
f (I) of Q, such that

I is a YES-instance of P ⇐⇒ f (I) is a YES-instance of Q.

Note the “⇐⇒ ” in the middle—you need to show both
directions.
You also need to show that the mapping f (·) can be done in
polynomial time (and hence f (I) has size polynomial in the
size of the original instance I).

Why is it useful to prove a problem is NP-complete?
From the point of view of algorithm design, why is this useful?

Independent Set is NP-complete
The Independent Set problem is: given a graph G and an
integer k, does G have an independent set of size ≥ k?

Theorem: Independent Set is NP-complete.
Proof: First we observe that Independent Set ∈ NP. (Trivial.)
Then we show that 3-SAT ≤p Independent Set, as shown in
the following example:

x1

x3x2

x2

x4x3

x1

x4x2

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4)

Independent Set is NP-complete, contd.

x1

x3x2

x2

x4x3

x1

x4x2

(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4)

We need to show two things:
1. A satisfying assignment gives us an independent set of size k.

2. An independent set of size k gives us a satisfying assignment.
(This one is subtle.)

Vertex Cover, Set Cover, Clique

These are easy. See the lecture notes.

Ham Cycle

A Hamiltonian cycle is a cycle in a graph that visits every vertex
exactly once. The Ham Cycle problem asks, given a directed
graph G , is there a Hamiltonian cycle.
Theorem: Ham Cycle is NP-complete
Proof: Obviously Ham Cycle is in NP. We reduce from 3-Sat.
Let φ be an arbitrary 3SAT instance with clauses c1, . . . , cm and
variables x1, . . . , xn. Construct the following gadget that represents
all possible truth assignments: (See next page)

...x1 Ck

...

...

...

x2

x3

xn

...

C1

s

t

C2

...

true

false

Direction we travel along this
chain represents whether to set
the variable to true or false.

xi

Ck Cj

Add a new node for each clause:

Connect it this
way if xi in Ck

Connect it this
way if xi in Ck

