451/651 Lecture 16 — NP-completeness

QOutline

» Reductions and expressiveness
» Formal definitions: decision problems, P and NP.
» Circuit-SAT and 3-SAT

» Examples of showing NP-completeness.

Reductions and Expressiveness

In the last few lectures we have seen:

» Bipartite matching can be solved with a max flow algorithm.

» The max flow problem can be solved by a linear programming
algorithm.

In this lecture we expand the idea of a reduction from one problem
to another. And we expand the application of reductions to prove
lower bounds on problem difficulty.

Polynomial Time

Definition: We say that an algorithm runs in Polynomial Time
if, for some constant c, its running time is O(n¢), where n is the
size of the input.

Input size: size of the problem description in bits.

Think about why the basic Ford-Fulkerson algorithm is
not a polynomial-time algorithm for network flow when
edge capacities are written in binary, but both of the
Edmonds-Karp algorithms are polynomial-time.

Reducibility

Definition: A problem A is poly-time reducible to problem B
(written as A <, B) if we can solve problem A in polynomial time
given a polynomial time black-box algorithm for problem B.1
Problem A is poly-time equivalent to problem B (A =, B) if
A<, Band B <, A

Think about the examples mentioned above — bipartite matching,
max flow, linear programming.

You can loosely think of A <, B as saying “A is no harder than B, up to
polynomial factors.”

Decision Problems

We consider decision problems, whose answer is YES or NO.
E.g., “Does the given network have a flow of value at least k7"
E.g., “Does the given graph have a 3-coloring?”

For such problems, we split all instances into two categories:
YES-instances (whose correct answer is YES) and NO-instances

(whose correct answer is NO). We put any ill-formed instances into
the NO category.

Karp Reductions

Definition: Karp reduction (aka Many-one reduction) from
problem A to problem B: To reduce problem A to problem B we
want a function f that maps arbitrary instances of A to instances
of B such that:
1. if x is a YES-instance of A then f(x) is a YES-instance of B.
2. if x is a NO-instance of A then f(x) is a NO-instance of B.

3. f can be computed in polynomial time.

Superficially this seems more limited than the B <, A reductions
we defined earlier. But it's cleaner and simpler and is not known to
be different.

Defintion of P

We can now define the complexity classes P and NP. These are
both classes of decision problems. (Sets of sets of strings.)

Definition: P is the set of decision problems solvable in
polynomial time.

E.g., the decision version of the network flow problem: “Given a
network G and a flow value k, does there exist a flow > k7"
belongs to P.

The Concept of NP

Informally NIP is the class of problems for which any YES-instance
can be efficiently checked if given a proper hint.

The TRAVELING SALESPERSON PROBLEM asks: “Given a
weighted graph G and an integer k, does G have a tour that visits
all the vertices and has total length at most k7"

If someone gave us such a tour we could easily check if it satisfied
the desired conditions. Therefore it's in NP.

The 3-COLORING problem asks: “Given a graph G, can vertices
be assigned colors red, blue, and green so that no two neighbors

have the same color?”

Again, to check a proposed solution is easy. Therefore it's in NP.

Formal Definition of NP

Definition: NP is the set of decision problems that have
polynomial-time verifiers. Specifically, problem Q is in NP if there
is a polynomial-time algorithm V/(/, X) such that:

» If | is a YES-instance, then there exists X such that
V(1,X) = YES.
» If I'is a NO-instance, then for all X, V(/,X) = NO.

Furthermore, X should have length polynomial in size of / (since
we are really only giving V' time polynomial in the size of the
instance, not the combined size of the instance and solution).
The question: Does NP =P is THE major unsolved problem in
theoretical computer science. We won't talk about it here.

Definition of NP-Complete

Loosely speaking, NP-complete problems are the “hardest”
problems in NP, if you can solve them in polynomial time then you
can solve any other problem in NP in polynomial time. Formally,

Definition: Problem Q is NP-complete if:
1. Qisin NP, and
2. For any other problem Q" in NP, Q" <, Q.

So if @ is NP-complete and you could solve @ in polynomial time,
you could solve any problem in NP in polynomial time. If @ just
satisfies part (2) of this definition, then it's called NP-hard.

CIRCUIT-SAT — the First NP-complete problem

CIRCUIT-SAT': Input: an acyclic circuit C of NAND gates with a
single output. Answer: YES if there is a setting of the inputs that
causes C to output 1?7 NO otherwise.

Theorem: CIRCUIT-SAT is NP-complete.

Proof: Wave hands vigorously. (For more on how to wave your
hands, read the lecture notes.)

3-SAT — the Second NP-complete problem

3-SAT: Given: a CNF formula (AND of ORs) over n variables
X1,...,Xn, Where each clause has at most 3 variables in it. E.g.,
(x1 VxaVx3)A (X Vx3)A(x1Vx3)A.... Answer YES if there
exists an assignment to the variables that satisfies the formula,
output NO otherwise.

The literals of each conjunction are distinct. (Delete dupliates.)
Theorem: CIRCUIT-SAT <, 3-SAT.

Proof: (Coming up in a moment)
Hence 3-SAT is NP-complete. Why?

CIRCUIT-SAT <, 3-SAT implies 3-SAT is
NP-complete

Proof that CIRCUIT-SAT <, 3-SAT

Proving NP-completeness in Two Easy Steps

If you want to prove that problem @ is NP-complete, you need to
do two things:

1. Show that @ is in NP.

2. Choose some NP-hard problem P to reduce from. This
problem could be 3-SAT or CLIQUE or --- any of the zillions
of NP-hard problems known.

Now you want to reduce from P to Q. In other words, given
any instance / of P, show how to transform it into an instance
f(I) of Q, such that

I is a YES-instance of P <= f(/) is a YES-instance of Q.

Note the “ <= " in the middle—you need to show both
directions.

You also need to show that the mapping f(-) can be done in
polynomial time (and hence f(/) has size polynomial in the
size of the original instance /).

Why is it useful to prove a problem is NP-complete?
From the point of view of algorithm design, why is this useful?

Independent Set is NP-complete
The INDEPENDENT SET problem is: given a graph G and an
integer k, does G have an independent set of size > k?

Theorem: INDEPENDENT SET is NP-complete.

Proof: First we observe that INDEPENDENT SET € NP. (Trivial.)
Then we show that 3-SAT <, INDEPENDENT SET, as shown in
the following example:

(X1vxzvg)/\(xevxsva)/\(yvX_2vX4)

Independent Set is NP-complete, contd.

(X4 V Xo V Xg) A (Xo V Xg v Xg) A (Xq V Xp V Xg)

We need to show two things:

1. A satisfying assignment gives us an independent set of size k.

2. An independent set of size k gives us a satisfying assignment.
(This one is subtle.)

VERTEX COVER, SET COVER, CLIQUE

These are easy. See the lecture notes.

Ham CYCLE

A Hamiltonian cycle is a cycle in a graph that visits every vertex
exactly once. The HAM CYCLE problem asks, given a directed
graph G, is there a Hamiltonian cycle.

Theorem: HaM CYCLE is NP-complete

Proof: Obviously HAM CYCLE is in NP. We reduce from 3-SAT.
Let ¢ be an arbitrary 3SAT instance with clauses ¢y, ..., ¢, and
variables xi, ..., x,. Construct the following gadget that represents
all possible truth assignments: (See next page)

Add a new node for each clause:

Connect it this
way if x; in Cy¢

Connect it this
way if%; in Cy

Direction we travel along this <«—true
chain represents whether to set
the variable to true or false. false ———»

