

Linear Programming III

David Woodruff

Outline

- Linear Programming Duality
- Application to zero sum games

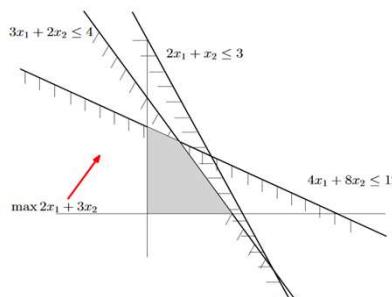
$$P = \max(2x_1 + 3x_2)$$

$$\text{s.t. } 4x_1 + 8x_2 \leq 12$$

$$2x_1 + x_2 \leq 3$$

$$3x_1 + 2x_2 \leq 4$$

$$x_1, x_2 \geq 0$$



Since $2x_1 + 3x_2 \leq 4x_1 + 8x_2 \leq 12$, we know $\text{OPT} \leq 12$

Since $2x_1 + 3x_2 \leq \frac{1}{2}(4x_1 + 8x_2) \leq 6$, we know $\text{OPT} \leq 6$

Since $2x_1 + 3x_2 \leq \frac{1}{3}((4x_1 + 8x_2) + (2x_1 + x_2)) \leq 5$, we know $\text{OPT} \leq 5$

Duality

- We took non-negative linear combinations of the constraints
- How do we find the best upper bound on OPT this way?
- Let $y_1, y_2, y_3 \geq 0$ be the coefficients of our linear combination. Then,

$$4y_1 + 2y_2 + 3y_3 \geq 2$$

$$8y_1 + y_2 + 2y_3 \geq 3$$

$$y_1, y_2, y_3 \geq 0$$

and we seek $\min(12y_1 + 3y_2 + 4y_3)$

$$P = \max(2x_1 + 3x_2)$$

$$\text{s.t. } 4x_1 + 8x_2 \leq 12$$

$$2x_1 + x_2 \leq 3$$

$$3x_1 + 2x_2 \leq 4$$

$$x_1, x_2 \geq 0$$

Primal LP

$$\begin{aligned} P = \max & (2x_1 + 3x_2) \\ \text{s.t.} & 4x_1 + 8x_2 \leq 12 \\ & 2x_1 + x_2 \leq 3 \\ & 3x_1 + 2x_2 \leq 4 \\ & x_1, x_2 \geq 0 \end{aligned}$$

Dual LP

$$\begin{aligned} 4y_1 + 2y_2 + 3y_3 &\geq 2 \\ 8y_1 + y_2 + 2y_3 &\geq 3 \\ y_1, y_2, y_3 &\geq 0 \end{aligned}$$

and we seek $\min(12y_1 + 3y_2 + 4y_3)$

- If (x_1, x_2) is feasible for the primal, and (y_1, y_2, y_3) feasible for the dual,
 $2x_1 + 3x_2 \leq 12 \geq 4y_1 + 2y_2 + 3y_3$
- If these are equal, we've found the optimal value for both LPs
- $(x_1, x_2) = (\frac{1}{2}, \frac{5}{4})$ and $(y_1, y_2, y_3) = (\frac{5}{16}, 0, \frac{1}{4})$ give the same value 4.75, so optimal

Dual LP

$$\begin{aligned} 4y_1 + 2y_2 + 3y_3 &\geq 2 \\ 8y_1 + y_2 + 2y_3 &\geq 3 \\ y_1, y_2, y_3 &\geq 0 \end{aligned}$$

and we seek $\min(12y_1 + 3y_2 + 4y_3)$

- Let's try do the same thing to the dual:
- $12y_1 + 3y_2 + 4y_3 \geq 4y_1 + 2y_2 + 3y_3 \geq 2$
- $12y_1 + 3y_2 + 4y_3 \geq 8y_1 + y_2 + 2y_3 \geq 3$
- $12y_1 + 3y_2 + 4y_3 \geq \frac{2}{3}(4y_1 + 2y_2 + 3y_3) + (8y_1 + y_2 + 2y_3) \geq \frac{4}{3} + 3$

Dual LP

$$\begin{aligned} 4y_1 + 2y_2 + 3y_3 &\geq 2 \\ 8y_1 + y_2 + 2y_3 &\geq 3 \\ y_1, y_2, y_3 &\geq 0 \end{aligned}$$

and we seek $\min(12y_1 + 3y_2 + 4y_3)$

$$\begin{aligned} P = \max & (2x_1 + 3x_2) \\ \text{s.t.} & 4x_1 + 8x_2 \leq 12 \\ & 2x_1 + x_2 \leq 3 \\ & 3x_1 + 2x_2 \leq 4 \\ & x_1, x_2 \geq 0 \end{aligned}$$

- Take non-negative linear combination of the two constraints
- How do we find the best lower bound on OPT this way?
- Let $x_1, x_2 \geq 0$ be the coefficients of our linear combination. Then,
- $4x_1 + 8x_2 \leq 12, 2x_1 + x_2 \leq 3, 3x_1 + 2x_2 \leq 4, x_1 \geq 0, x_2 \geq 0$
and we seek to maximize $2x_1 + 3x_2$

We got back the **primal!**

Non-Nice Constraints

$$\begin{aligned} P = \max & (7x_1 - x_2 + 5x_3) \\ \text{s.t.} & x_1 + x_2 + 4x_3 \leq 8 \\ & 3x_1 - x_2 + 2x_3 \geq 3 \\ & x_1, x_2, x_3 \geq 0 \end{aligned}$$

$$\begin{aligned} D = \min & (8y_1 + 3y_2) \\ \text{s.t.} & y_1 + 3y_2 \geq 7 \\ & y_1 - y_2 \geq -1 \\ & 4y_1 + 2y_2 \geq 5 \\ & y_1 \geq 0, y_2 \leq 0 \end{aligned}$$

Formal Definition of Duality

Primal

Max $c^T x$
subject to $Ax \leq b$
 $x \geq 0$

Dual

Min $b^T y$
subject to $A^T y \geq c$
 $y \geq 0$

- Dual of the dual is the primal!
- Can we get better upper/lower bounds by looking at more complicated combinations of the inequalities, not just linear combinations?

Weak Duality

Primal

Max $c^T x$
subject to $Ax \leq b$
 $x \geq 0$

Dual

Min $b^T y$
subject to $A^T y \geq c$
 $y \geq 0$

- (Weak Duality) If x is a feasible solution of the primal, and y is a feasible solution of the dual, then $c^T x \leq b^T y$
- Proof: Since $x \geq 0$ and $y \geq 0$,

$$c^T x \leq y^T A x \leq y^T b = b^T y$$

Strong Duality

Primal

Max $c^T x$
subject to $Ax \leq b$
 $x \geq 0$

Dual

Min $b^T y$
subject to $A^T y \geq c$
 $y \geq 0$

- (Strong Duality) If primal is feasible and bounded (i.e., optimal value is not ∞), then dual is feasible and bounded (and if dual is feasible and bounded, so is the primal). If x^* is optimal solution to the primal, and y^* is optimal solution to dual, then

$$c^T x^* = b^T y^*$$
- To prove x^* is optimal, I can give you y^* and you can check if x^* is feasible for the primal, y^* is feasible for the dual, and $c^T x^* = b^T y^*$

Consequences of Duality

$P \setminus D$	I	O	U
I	?	?	?
O	?	?	?
U	?	?	?

I means infeasible

O means feasible and bounded

U means unbounded

Which combinations are possible?

Consequences of Duality

$P \setminus D$	I	O	U
I	✓	X	✓
O	X	✓	X
U	✓	X	X

I means infeasible

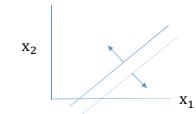
O means feasible and bounded

U means unbounded

Check means possible

X means impossible

$P \setminus D$	I	O	U
I	✓	X	✓
O	X	✓	X
U	✓	X	X

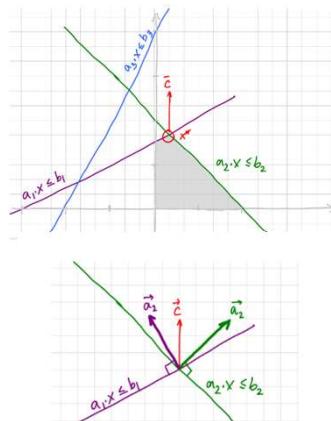


Possible Scenarios

- Suppose primal is feasible and bounded
- By strong duality, dual is feasible and bounded
- If primal (maximization) is unbounded, by weak duality, $c^T x \leq b^T y$, so no feasible dual solution
e.g., $\max x_1$ subject to $x_1 \geq 1$ and $x_1 \geq 0$
dual will have $y_1 \leq 0$ and $y_1 \geq 1$
- Can primal and dual both be infeasible?
 - Primal:** $\max 2x_1 - x_2$ subject to $x_1 - x_2 \leq 1$ and $-x_1 + x_2 \leq -2$ and $x_1 \geq 0, x_2 \geq 0$
 - Dual:** $y_1 \geq 0, y_2 \geq 0$, and $y_1 - y_2 \geq 2$ and $-y_1 + y_2 \geq -1$, and $\min y_1 - 2y_2$
- Constraints are same for primal and dual, and both infeasible

Strong Duality Intuition

Suppose x^* satisfies $a_1 x = b_1$ and $a_2 x = b_2$



Strong Duality Intuition

- For non-negative y_1 and y_2

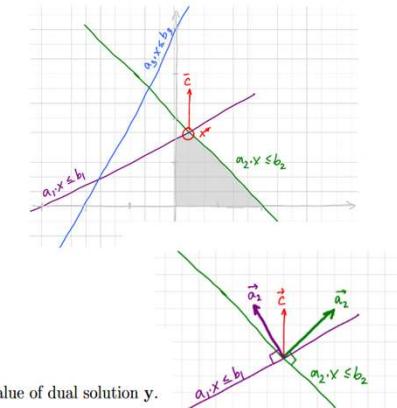
$$c = y_1 a_1 + y_2 a_2.$$

$$\begin{aligned} c^T x^* &= (y_1 a_1 + y_2 a_2) \cdot x^* \\ &= y_1 (a_1 \cdot x^*) + y_2 (a_2 \cdot x^*) \\ &= y_1 b_1 + y_2 b_2 \end{aligned}$$

Defining $y = (y_1, y_2, 0, \dots, 0)$, we get

$$\text{optimal value of primal} = c^T x^* = b^T y = \text{value of dual solution } y.$$

the y we found satisfies $c = y_1 a_1 + y_2 a_2 = \sum_i y_i a_i = A^T y$, and hence y satisfies the dual constraints $y^T A \geq c^T$ by construction. But $b^T y \geq c^T x^*$ by weak duality, so y is optimal!



Duality in Zero-Sum Games

- R is an $n \times m$ row payoff matrix
- W.l.o.g. R has all non-negative entries
- Variables: v, p_1, \dots, p_n
- Max v
subject to $p_i \geq 0$ for all rows i , $\sum_i p_i = 1$, $\sum_i p_i R_{ij} \geq v$ for all columns j
- Replace $\sum_i p_i = 1$ with $\sum_i p_i \leq 1$.
- Include $v \geq 0$
- Write $\sum_i p_i R_{ij} \geq v$ as $v - \sum_i p_i R_{ij} \leq 0$

Duality in Zero-Sum Games

$\max c^T x$ subject to $Ax \leq b$ and $x \geq 0$

$$x = \begin{bmatrix} v \\ p_1 \\ p_2 \\ \dots \\ p_n \end{bmatrix}, c = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \dots \\ 0 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \\ \dots \\ 0 \\ 1 \end{bmatrix}, \text{ and } A = \begin{array}{c|cc} 1 & -R^T \\ 1 & & \\ \dots & & \\ 1 & & \\ 0 & 1 & \dots & 1 \end{array}.$$

- Dual: $\min y^T b$ subject to $y^T A \geq c^T$ and $y \geq 0$ for $y = (y_1, \dots, y_{m+1})$
- Dual constraints say $y_1 + \dots + y_m \geq 1$ and $\sum_j y_j R_{ij} \leq y_{m+1}$ for all rows i
 - Since we're minimizing y_{m+1} and R_{ij} all non-negative, $y_1 + \dots + y_m = 1$
- y_{m+1} is value to the row player and y_1, \dots, y_m is column player's strategy
- **Strong duality:** $\max_p \min_j \sum_i p_i R_{ij} = \min_{y_1, \dots, y_m} \max_i \sum_j y_j R_{ij}$