Lectures 6: The Data
Stream Model

David Woodruff
Carnegie Mellon University

1/26/2018

23

Data Streams

* A data stream is a sequence of data, that is too large to be stored in available
memory

* Examples

Internet search logs

Network Traffic S, © Sensor Nodel
O ® - Q Gateway

Sensor networks Sensor Nods

Scientific data streams (astronomical, genomics, physical simulations)...

1/26/2018

24

1/26/2018

Streaming Model

.

* Stream of elements a, ..., @, ... each from an alphabet X and
taking b bits to represent

* Single or small number of passes over the data

* Almost all algorithms are randomized and approximate
* Usually necessary to achieve efficiency
* Randomness is in the algorithm, not the input

* Goals: minimize space complexity (in bits), processing time

25

Example Streaming Problems

* Letapy.g =< ay, ..., ay > be the first t elements of the stream

* Suppose ay, ...,a; are integers in {-2° +1,-2+2,..,-1,0, 1, 2, ..., 2P-1}
* Example stream: 3,1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32

* How many bits do we need to maintain f(a[;.q)= Xi=1,_ tai?

* Outputs on example: 3, 4, 21, 25, 16, 48, 149, 152, -570, -567, 333, 337, 379, ...

* O(b+logt)

* How many bits do we need to maintain f(af;.q)= _rr}axtai?
1=1,...,

e Qutputs on example: 3, 3,17, 17, 32, 101, 101, 101, 101, 900, 900, 900, ...
* O(b) bits

1/26/2018

26

1/26/2018

Example Streaming Problems

* What about the median of all the numbers we’ve stored so far?
* Example stream: 3,1, 17, 4, -9, 32, 101, 3, -722, 3,900, 4, 32
* Median: 3,1,3,3,3,3,4,3, ..
* This seems harder...

* What about the number of distinct elements we’ve seen so far?
* Qutputs on example: 1, 2,3,4,5,6,7,7,8,8,9,9,9, ...

* What about the elements that have appeared at least an e-fraction of
the time? These are called e-heavy hitters
* Cover this today

27

1/26/2018

Many Applications

* Internet router may want to figure out which IP connections are
“elephants”, that is, the heavy hitters, e.g., the ones that use more
than .01% of your bandwidth

* Or maybe the router wants to know the median (or 90-th percentile)
of the file sizes being transferred

* Hashing is a key technique

28

1/26/2018

Finding e-Heavy Hitters

S; is the multiset of items at time t,s0o Sy = 0, S; = {a;}, ...,S; = {ay, ..., a;},
count.(e) = {i € {1,2, ..., t} such that a; = e}

e € X is an e-heavy hitter at time t if count.(e) > € -t

Given € > 0, can we maintain a data structure to output the e-heavy hitters?

. , 1 - .
* More precisely, let’s output a set of size - containing all the e-heavy hitters

Note: can output “false positives” but not allowed to output “false negatives”, i.e.,
not allowed to miss any heavy hitter, but could output non-heavy hitters

29

1/26/2018

Finding e-Heavy Hitters

* Example: E,D,B,D, D5 D, B, A, C,B1oB,E EE E5, E
(the subscripts are just to help you count)

* At time 5, the element D is the only 1/3-heavy hitter
* At time 11, both B and D are 1/3-heavy hitters

* At time 15, there is no 1/3-heavy hitter

* At time 16, only E is a 1/3-heavy hitter

Can’t afford to keep counts of all items, so how to maintain a short
summary to output the e-heavy hitters?

30

Finding a Majority Element

* First find a .5-heavy hitter, that is, a majority element:

memory < empty and counter <0
when element a; arrives
if (counter == 0)
memory < a; and counter < 1
else
if a, = memory
counter + +
else
counter - -
(discard ay)
* At end of the stream, return the element in memory

1/26/2018

31

Analysis of Finding a Majority Element
* If there is no majority element, we output a false positive, which is OK
* If there is a majority element, we will output it. Why?

* When we discard an element a;, we throw away a different element

* Every time we throw away a copy of a majority element, we throw
away another element, but majority element is more than half the
total number of elements, so can’t throw away all of them

1/26/2018

32

Extending to e-Heavy Hitters

Setk = E] -1
Array T[1, ..., k], where each location can hold one element from X

Array C[1, ..., k], where each location can hold a non-negative integer
C[i] « 0 and T[i] «L forall i

If thereisj € {1, 2, ...,k} such that a, = T[j], then C[j] + +
Else if some counter C[j] =0 then T[j] « a;and C[j] « 1

Else decrement all counters by 1 (and discard element ay)

esti(e) = C[j] if e == TJ[j], and est;(e) = 0 otherwise

1/26/2018

33

Analyzing Counts

* Lemma: 0 < count;(e) — est.(e) < ﬁ <e-t

* Proof: count;(e) > est,(e) since we never increase a counter for e unless
we see e

If we don’t increase est.(e) by 1 when we see an update to e, we decrement k
counters and discard the current update to e

So we drop k+1 distinct stream updates, but there are t total updates, so we
. t .
won’t increase est,(e) by 1, when we should, at most 1 < e-ttimes

1/26/2018

34

1/26/2018

Heavy Hitters Guarantee

* At any time t, all e-heavy hitters e are in the array T. Why?
* For an e-heavy hitter e, we have count(e) >€ - t

* But est;(e) = count (e) —€-t
*Soesty(e)>0,soeisinarray T

* Space is O(k (log(Z) + log t)) = O(1/ €) (log(X) + log t) bits

35

1/26/2018

Heavy Hitters with Deletions

* Suppose we have a stream which allows deleting elements e that have
already appeared

* Example: (add, A), (add, B), (add, A), (del, B), (del, A), (add, C)

* Multisets at different times:
SO = QI Sl = {A}; SZ = {Ar B}r S3 = {A, Ar B}, S4— = {Ai A}' SS = {A}l
S6 = {A, C},

* “active” set S; has size |S¢| = Y oex counti(e) and can grow and shrink

36

1/26/2018

Data Structure for Approximate Counts

* Query “What is count,(e)?”, should output est;(e) with:
Pr[|est.(e) — count (e)| < €|S¢|]]=1—-8

* Want space close to our previous O(1/ €) (log(X) + log t) bits
e Lleth:X - {0,1,2, ...,k — 1} be a hash function (will specify later)
* Maintain an array A[O, 1, ..., k-1] to store non-negative integers

when update a; arrives:
if a, = (add,) then A[h(e)] + +
else a, = (del,e), and A[h(e)] — —

* esty(e) = A[h(e)]

37

1/26/2018

Data Structure for Approximate Counts

* Alh(e)] = Yo counti(e’) - 1(h(e’) = h(e)), where 1(condition)
evaluates to 1 if the condition is true, and evaluates to 0 otherwise

* Alh(e)] = counti(e) + X .., counti(e’) - 1(h(e’) = h(e)),
* esti(e) — county(e) = Y., counti(e’) - 1(h(e’) = h(e))

* Since we have a small array A with k locations, there are likely many
e’ # e with h(e’) = h(e), but can we bound the expected error?

38

Data Structure for Approximate Counts

* Recall: Family H of hash functions h: U -> {0, 1, ..., M-1} is universal if for all x # y,

1
Pr[hG) =h(y)] < M

* Gave a simple family where h can be specified using O(log |X|) bits
* E[esti(e) — counti(e)] = E[X /... counti(e’) - 1(h(e") = h(e))]
o'z counte(e’) - E[1(h(e") = h(e))]

= Yerze counte(e’) - Prih(e’) = h(e)]

~ (1

< Yerze counte(e’) - (E)

_ ISt|— county(e) < @

- Kk ~ k&
k = 1/€ makes this at most € - |S;|. Space is O(%) counters plus storing hash function

1/26/2018

39

1/26/2018

High Probability Bounds

* Have 0 < est(e) — count;(e) < |S;|/k in expectation
* With probability 1/2, est.(e) — count.(e) < 2|S;|/k Why?

* Can we amplify the success probability to 1-6?
* Independent repetition: pick m hash functions hy, ..., hj, with
h;:X - {0,1,2, ...,k — 1} independently from H. Create array A; for h;
when update a; arrives:
for eachifrom1tom
if a, = (add, e) then A;[h;(e)] + +
else a; = (del, e) and A;[h;(e)] — —

40

High Probability Bounds and Overall Space

What is our new estimate of count,(e)?

m

best;(e) 1= l’}’li{l A;[hi(e)].
1=
* Intuition: each A;[h;(e)] is an overestimate to count;(e)

m
* By independence, Prfor all i, A;[h;(e)] = 2|S;|/k] < G)

* Fork= %and m = log, (%), the error is at most €|S;| with probability 1-8

log(5) .
* Space: m - k = O(—>) counters each of O(lg t) bits

€

m - O(log |Z|) = O(log (%) log|Z|) bits to store hash functions

1/26/2018

41

e-Heavy Hitters

* Our new estimate best;(e) satisfies
Pr[|best.(e) — count (e)| < €|S¢{|]]=1—-8

log(3) log t
and uses O(w + log (%) log |X|) bits of space

* What if we want with probability 1/10, simultaneously for all e,
|best.(e) — count(e)| < €|S;|?

*Setd = #IZI and apply a union bound over alle € X

1/26/2018

42

