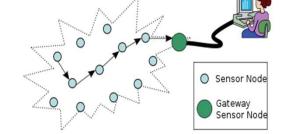
Lectures 6: The Data Stream Model

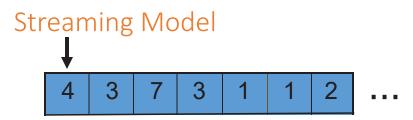
David Woodruff
Carnegie Mellon University

Data Streams

- A data stream is a sequence of data, that is too large to be stored in available memory
- Examples
 - Internet search logs
 - Network Traffic
 - Sensor networks



• Scientific data streams (astronomical, genomics, physical simulations)...



- Stream of elements $\textbf{a}_{\text{1}},$..., $\textbf{a}_{\text{i}},$... each from an alphabet Σ and taking b bits to represent
- Single or small number of passes over the data
- Almost all algorithms are randomized and approximate
 - Usually necessary to achieve efficiency
 - Randomness is in the algorithm, not the input
- Goals: minimize space complexity (in bits), processing time

Example Streaming Problems

- Let $a_{[1:t]} = < a_{\rm 1}, \ldots, a_{\rm t} >$ be the first t elements of the stream
- Suppose $a_1, ..., a_t$ are integers in $\{-2^b+1, -2^b+2, ..., -1, 0, 1, 2, ..., 2^b-1\}$
 - Example stream: 3, 1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32
- How many bits do we need to maintain $f(a_{[1:t]}) = \sum_{i=1,\dots,t} a_i$?
 - Outputs on example: 3, 4, 21, 25, 16, 48, 149, 152, -570, -567, 333, 337, 379, ...
 - O(b + log t)
- How many bits do we need to maintain $f(a_{[1:t]}) = \max_{i=1,...,t} a_i$?
 - Outputs on example: 3, 3, 17, 17, 32, 101, 101, 101, 101, 900, 900, 900, ...
 - O(b) bits

Example Streaming Problems

- What about the median of all the numbers we've stored so far?
 - Example stream: 3, 1, 17, 4, -9, 32, 101, 3, -722, 3, 900, 4, 32
 - Median: 3, 1, 3, 3, 3, 3, 4, 3, ...
 - This seems harder...
- What about the number of distinct elements we've seen so far?
 - Outputs on example: 1, 2, 3, 4, 5, 6, 7, 7, 8, 8, 9, 9, 9, ...
- What about the elements that have appeared at least an ϵ -fraction of the time? These are called ϵ -heavy hitters
 - Cover this today

Many Applications

- Internet router may want to figure out which IP connections are "elephants", that is, the heavy hitters, e.g., the ones that use more than .01% of your bandwidth
- Or maybe the router wants to know the median (or 90-th percentile) of the file sizes being transferred
- Hashing is a key technique

Finding €-Heavy Hitters

- S_t is the multiset of items at time t, so $S_0=\emptyset$, $S_1=\{a_1\},\ ...,S_i=\{a_1,...,a_i\}$, count_t(e) = $\{i\in\{1,2,...,t\}$ such that $a_i=e\}$
- $e \in \Sigma$ is an ϵ -heavy hitter at time t if $count_t(e) > \epsilon \cdot t$
- Given $\epsilon>0$, can we maintain a data structure to output the ϵ -heavy hitters?
 - More precisely, let's output a set of size $\frac{1}{\epsilon}$ containing all the ϵ -heavy hitters
- Note: can output "false positives" but not allowed to output "false negatives", i.e., not allowed to miss any heavy hitter, but could output non-heavy hitters

Finding €-Heavy Hitters

- Example: E, D, B, D, D_5 D, B, A, C, B_{10} B, E, E, E, E, E_{15} , E (the subscripts are just to help you count)
- At time 5, the element D is the only 1/3-heavy hitter
- At time 11, both B and D are 1/3-heavy hitters
- At time 15, there is no 1/3-heavy hitter
- At time 16, only E is a 1/3-heavy hitter

Can't afford to keep counts of all items, so how to maintain a short summary to output the ϵ -heavy hitters?

Finding a Majority Element

Analysis of Finding a Majority Element

- If there is no majority element, we output a false positive, which is OK
- If there is a majority element, we will output it. Why?
 - ullet When we discard an element a_{t} , we throw away a different element
 - Every time we throw away a copy of a majority element, we throw away another element, but majority element is more than half the total number of elements, so can't throw away all of them

Extending to €-Heavy Hitters

```
Set k = \left\lceil \frac{1}{\epsilon} \right\rceil - 1 Array T[1, ..., k], where each location can hold one element from \Sigma Array C[1, ..., k], where each location can hold a non-negative integer C[i] \leftarrow 0 and T[i] \leftarrow\bot for all i
```

If there is $j \in \{1, 2, ..., k\}$ such that $a_t = T[j]$, then C[j] + + Else if some counter C[j] = 0 then $T[j] \leftarrow a_t$ and $C[j] \leftarrow 1$ Else decrement all counters by 1 (and discard element a_t)

 $\mathsf{est}_t(e) = \mathtt{C}[\mathtt{j}] \ \mathsf{if} \ e == \mathtt{T}[\mathtt{j}] \mathsf{, and} \ \mathsf{est}_t(e) = \mathtt{0} \ \mathsf{otherwise}$

Analyzing Counts

- Lemma: $0 \le count_t(e) est_t(e) \le \frac{t}{k+1} \le \epsilon \cdot t$
- Proof: $count_t(e) \ge est_t(e)$ since we never increase a counter for e unless we see e

If we don't increase ${\sf est}_t(e)$ by 1 when we see an update to e, we decrement k counters and discard the current update to e

So we drop k+1 distinct stream updates, but there are t total updates, so we won't increase $est_t(e)$ by 1, when we should, at $most \frac{t}{k+1} \leq \epsilon \cdot t$ times

Heavy Hitters Guarantee

- At any time t, all ϵ -heavy hitters e are in the array T. Why?
- For an ϵ -heavy hitter e, we have $\operatorname{count}_{\mathsf{t}}(\mathsf{e}) > \epsilon \cdot \mathsf{t}$
- But $est_t(e) \ge count_t(e) \epsilon \cdot t$
- So $est_t(e) > 0$, so e is in array T
- Space is O(k (log(Σ) + log t)) = O(1/ ϵ) (log(Σ) + log t) bits

Heavy Hitters with Deletions

- Suppose we have a stream which allows deleting elements e that have already appeared
- Example: (add, A), (add, B), (add, A), (del, B), (del, A), (add, C)
- Multisets at different times:

$$S_0 = \emptyset$$
, $S_1 = \{A\}$, $S_2 = \{A, B\}$, $S_3 = \{A, A, B\}$, $S_4 = \{A, A\}$, $S_5 = \{A\}$, $S_6 = \{A, C\}$, ...

• "active" set S_t has size $|S_t| = \sum_{e \in \Sigma} count_t(e)$ and can grow and shrink

Data Structure for Approximate Counts

- Query "What is $count_t(e)$?", should output $est_t(e)$ with: $Pr[|est_t(e) count_t(e)| \le \epsilon |S_t|] \ge 1 \delta$
- Want space close to our previous O(1/ ϵ) (log(Σ) + log t) bits
- Let h: $\Sigma \to \{0,1,2,...,k-1\}$ be a hash function (will specify later)
- Maintain an array A[0, 1, ..., k-1] to store non-negative integers

when update a_t arrives:

$$\begin{aligned} & \text{if } a_t = (add,e) \text{ then } A[h(e)] + + \\ & \text{else } a_t = (del,e) \text{, and } A[h(e)] - - \end{aligned}$$

• $est_t(e) = A[h(e)]$

Data Structure for Approximate Counts

- $A[h(e)] = \sum_{e' \in \Sigma} count_t(e') \cdot \mathbf{1}(h(e') = h(e))$, where $\mathbf{1}(condition)$ evaluates to 1 if the condition is true, and evaluates to 0 otherwise
- $A[h(e)] = count_t(e) + \sum_{e' \neq e} count_t(e') \cdot \mathbf{1}(h(e') = h(e)),$
- $est_t(e) count_t(e) = \sum_{e' \neq e} count_t(e') \cdot \mathbf{1}(h(e') = h(e))$
- Since we have a small array A with k locations, there are likely many $e' \neq e$ with h(e') = h(e), but can we bound the expected error?

Data Structure for Approximate Counts

- Recall: Family H of hash functions h: U -> {0, 1, ..., M-1} is universal if for all $x \neq y$, $\Pr_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{M}$
- Gave a simple family where h can be specified using $O(\log |\Sigma|)$ bits

$$\begin{split} \bullet \ \mathsf{E}[\mathsf{est}_\mathsf{t}(\mathsf{e}) - \mathsf{count}_\mathsf{t}(\mathsf{e})] &= \mathsf{E}[\sum_{\mathsf{e}' \neq \mathsf{e}} \mathsf{count}_\mathsf{t}(\mathsf{e}') \cdot \mathbf{1}(\mathsf{h}(\mathsf{e}') = \mathsf{h}(\mathsf{e}))] \\ &= \sum_{\mathsf{e}' \neq \mathsf{e}} \mathsf{count}_\mathsf{t}(\mathsf{e}') \cdot \mathsf{E}[\mathbf{1}(\mathsf{h}(\mathsf{e}') = \mathsf{h}(\mathsf{e}))] \\ &= \sum_{\mathsf{e}' \neq \mathsf{e}} \mathsf{count}_\mathsf{t}(\mathsf{e}') \cdot \mathsf{Pr}[\mathsf{h}(\mathsf{e}') = \mathsf{h}(\mathsf{e})] \\ &\leq \sum_{\mathsf{e}' \neq \mathsf{e}} \mathsf{count}_\mathsf{t}(\mathsf{e}') \cdot \left(\frac{1}{\mathsf{k}}\right) \\ &= \frac{|\mathsf{S}_\mathsf{t}| - \mathsf{count}_\mathsf{t}(\mathsf{e})}{\mathsf{k}} \leq \frac{|\mathsf{S}_\mathsf{t}|}{\mathsf{k}} \end{split}$$

 $k = 1/\epsilon$ makes this at most $\epsilon \cdot |S_t|$. Space is $O(\frac{1}{\epsilon})$ counters plus storing hash function

High Probability Bounds

- Have $0 \le est_t(e) count_t(e) \le |S_t|/k$ in expectation
 - With probability 1/2, $est_t(e) count_t(e) \le 2|S_t|/k$ Why?
- Can we amplify the success probability to 1- δ ?
 - Independent repetition: pick m hash functions $h_1, ..., h_m$ with $h_i \colon \Sigma \to \{0, 1, 2, ..., k-1\} \text{ independently from H. Create array } A_i \text{ for } h_i$ when update a_t arrives:

 $\begin{aligned} & \text{for each i from 1 to m} \\ & \text{if } a_t = (add, e) \text{ then } A_i[h_i(e)] + + \\ & \text{else } a_t = (del, e) \text{ and } A_i[h_i(e)] - - \end{aligned}$

High Probability Bounds and Overall Space

What is our new estimate of $count_t(e)$?

$$best_t(e) := \min_{i=1}^m A_i[h_i(e)].$$

- Intuition: each $A_i[h_i(e)]$ is an overestimate to $count_t(e)$
- By independence, $\Pr[\text{for all i, } A_i[h_i(e)] \ge 2|S_t|/k] \le \left(\frac{1}{2}\right)^m$
- For $k = \frac{2}{\epsilon}$ and m = $\log_2(\frac{1}{\delta})$, the error is at most $\epsilon |S_t|$ with probability 1- δ
- Space: $m \cdot k = O(\frac{\log(\frac{1}{\delta})}{\epsilon})$ counters each of O(lg t) bits

 $m \cdot O(\log |\Sigma|) = O(\log \left(\frac{1}{\delta}\right) \log |\Sigma|)$ bits to store hash functions

ε-Heavy Hitters

• Our new estimate $best_t(e)$ satisfies $\Pr[|best_t(e) - count_t(e)| \leq \epsilon |S_t|] \geq 1 - \delta$

and uses
$$O(\frac{\log(\frac{1}{\delta})\log t}{\epsilon} + \log(\frac{1}{\delta})\log |\Sigma|)$$
 bits of space

- What if we want with probability 1/10, simultaneously for all e, $|best_t(e) count_t(e)| \le \epsilon |S_t|$?
- Set $\delta = \frac{1}{10|\Sigma|}$ and apply a union bound over all $e \in \Sigma$