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Hashing

* Useful tool for
* Dictionary data structures
* Cryptography
* Complexity theory
* Streaming algorithms

* Today
* Universal hashing
* Perfect hashing
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Maintaining a Dictionary

* Large universe of “keys” denoted by U
* U could be all strings of ASCII characters of length at most 80

* Much smaller “dictionary”, which is a subset S of U
* S could be the set of all English words

* Want to support operations to maintain the dictionary
* Insert(x): add the key xto S
* Query(x): is the key x in S?
* Delete(x): remove the key x from S
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Dictionary Settings

* Static: don’t support insert and delete operations, just want to optimize your
data structure for fast query operations
* For example, the English dictionary does not change (or only very gradually)
* Could use a sorted array with binary search

* Insertion-only: just support insert and query operations

* Dynamic: support insert, delete, and query operations
* Could use a balanced search tree (AVL trees) to get O(log |S|) time per iteration

* Hashing gives an alternative approach, often the fastest and most convenient
way to solve these problems




Formal Hashing Setup

Universe U is very large
* E.g., set of ASCII strings of length 80 is 1288°

Care about a small subset S c U. Let N = |S].
¢ S could be the names of all students in this class

Our data structure is an array A of size M and a “hash function” h: U = {0, 1, ..., M-1}.

* Typically M < U, so can’t just store each key x in A[x]
* Insert(x) will try to place key x in A[h(x)]

But what if h(x) = h(y) for x # y? We let each entry of A be a linked list.
* To insert an element x into A[h(x)], insert it at the top of the list
* Hope linked lists are small
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Implementation Details

* Hashing easy to implement

* Query(x): compute i = h(x) and walk down the list A[i] until you find x
or walk off the list

* Insert(x): place x at the top of the list A[i]

* Delete(x): remove x from the list A[i] by walking down the list
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How to Choose the Hash Function h?

* Want it to be unlikely that h(x) = h(y) for different keys x and y
* Want our array size M to be of size O(N), where N is number of keys

* Want to quickly compute h(x) given x
* For now, we will treat this computation as O(1) time

* How long do Query(x) and Delete(x) take?
* O(length of list A[h(x)]) time

* How long does Insert(x) take?
* O(1) time no matter what

* So how long can these lists A[h(x)] be?
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Bad Sets Exist for any Hash Function

* Claim: For any hash function h: U->{0, 1, 2, ..., M-1},if [U| = (N—1)M + 1,
there is a set S of N elements of U that all hash to the same location

* Proof: If every location had at most N-1 elements of U hashing to it, then we
would have |[U| < (N —-1)M

* So there’s no good hash function h that works for every S. Thoughts?

* Universal Hashing: Let’s randomly choose h!

* We show for any sequence of insert, query, and delete operations, the expected number
of operations, over a random choice of h, will be small
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Universal Hashing

* Definition: A randomized algorithm H for constructing a hash function
h:U->{0, 1, 2, ..., M-1} is universal if forall x # y,

Prih(0 =h@)] <

==

* We also say a set H of hash functions is a universal hash function family if
choosing h € H uniformly at random is universal

* Note the condition holds for every x # y, and the randomness is only over
the choice of h from H

[heH [hG0=h(y)| _

* Equivalently, for every x # y, we have: H]| %
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Universal Hashing Examples

Example 1: The following three hash families with hash functions mapping the set {a, b} to {0,1} are
universal, because at most 1/M of the hash functions in them cause a and b to collide, were M = {0, 1}|.

a b a b
hy || 0 0 hi | 0 1
hz 0 1 hz 1 0

o = o8

- O o
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Examples that are Not Universal

P— a b c

hy 0O 0 1

h,y 0 0 ,
“d I ha |1 1 0
2 hs 1 0 1

* Note that a and b collide with probability more than 1/M = 1/2
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Universal Hashing Example

* The following hash function is universal with M = |{0,1,2}|

ho || O
h| 0
ha 1

« Note!

SN = O
- N SN
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Using Universal Hashing

* Theorem: If H is universal, then for any set S € U with [S| =N, forany x €
S, if we choose h at random from H, the expected number of collisions
between x and other elements in S is at most N/M.

* Proof: Fory € Swithy # x, let Cy, = 1if h(x) = h(y), otherwise Cxy, = 0

Let Cyx = Xy+x Cxy be the total number of collisions with x
1
E[Cxy] = Pr[h(x) = h(M] < &

By linearity of expectation, E[Cx] = Xy.x E[Cxy] < %
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Using Universal Hashing

* Corollary: If H is universal, for any sequence of L insert, query, and delete
operations in which there are at most M keys in the data structure at any
time, the expected cost of the L operations for a random h € H is O(L)

* Assumes the time to compute his O(1)

* Proof: For any operation in the sequence, its expected cost is O(1) by the
last theorem, so the expected total cost is O(L) by linearity of expectation
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But how to Construct a Universal Hash Family?

* Suppose |U| = 2" and M = 2™
* Let A be a random m x u binary matrix, and h(x) = Ax mod 2

(72

TL A _ |:|h.(:1r) = Ax
l g

8

* Claim: for x # y, Pr[h(x) = h(y)] = % =L
X

2m
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But how to Construct a Universal Hash Family?

- Claim: Forx # y, Prlh(x) = h(y)] = — = im
X M 2

* Proof: A-xmod 2 = }; A;X; mod 2, where A; is the i-th column of A
If h(x) = h(y), then Ax=Ay mod 2, so A(x-y) = 0 mod 2
If X # y, there exists an i* for which x;« # y;*
Fix A; for all j # i*, which fixes b = ¥, Aj(x;—y;) mod 2
A(x-y) =0 mod 2 if and only if Aj*=b
1

1
krlAe =bl = =5y

So h(x) = Ax mod 2 is universal
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k-wise Independent Families

* Definition: A hash function family H is k-universal if for every set of k distinct
keys X4, ..., X and every set of kvalues vy, ...,vi € {0,1,...,M — 1},

Pr[h(x,) = v; AND h(x,) = v, AND ... AND h(x) = vy ] = ﬁ

* If H is 2-universal, then it is universal. Why?
* h(x) = Ax mod 2 for a random binary A is not 2-universal. Why?

* Exercise: Show Ax + b mod 2 is 2-universal, where Ain {0,1}™*™ and b €
{0,1}™ are chosen independently and uniformly at random
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More Efficient Universal Hashing

* Given a key x, suppose x = [Xy, ..., Xx] where each x; € {0,1, ..., M — 1}
* Suppose M is prime

* Choose randomry,.., 1y € {0,1,...,M — 1} and define
h(x) = ryxq + ry%, + ... + rXg mod M

* Uses less randomness than matrix product

* Claim: the family of such hash functions is universal, that is,
lir[h(x) =h(y)] < %for allxandy
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More Efficient Universal Hashing

* Claim: the family of such hash functions is universal, that is,
lir[h(x) =h(y)] < %for allx #vy

* Proof: Since X # y, there is an i* for which x;+ # y;-
Let h'(X) = X4+ 1jXj, and h(x) = h’(x) + rj=x;» mod M
If h(x) = h(y), then h’(x) + rj=xj<= h’(y) + rj<y;* mod M
Sorj(Xj —y3+) = h'(y) — h'(x) mod M, or rjx = hiw%;l(x) mo

This happens with probability exactly 1/M

dM
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Perfect Hashing

* If we fix the dictionary S of size N, can we find a hash function h so that all query(x)
operations take constant time?

N

* Claim: If H is universal and M = N2, then hPl;{[no collisions in S] =

* Proof: How many pairs (x,y) in S are there?
Answer: N(N-1)/2
For each pair, the probability of a collision is at most 1/M

Pr[exists a collision]< (N(N-1)/2)/M < %

Just try a random h and check if there are any collisions
Problem: our hash table has M = N? space! How can we get O(N) space?
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Perfect Hashing in O(N) Space — 2 Level Scheme

* Choose a hash function h: U - {1, 2, ..., N} from a universal family

* Let L; be the number of items x in S for which h(x) =i

* Choose N “second-level” hash functions hy, h,, ..., hy, where h;: U - {1, ..., L%}

By previous analysis, can
choose hash functions

hy, h,, ..., hy so that there are
no collisions, so O(1) time

Hash table size is i, _, ¥
How big is that??
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Perfect Hashing in O(N) Space — 2 Level Scheme

* Theorem: If we pick h from a universal family H, then

P Z [? > 4N] < L
h«—rH[ i ] -2
i=1,..,.N

* Proof: It suffices to show E[}}; L%] < 2N and apply Markov’s inequality
Let Cx, = 1if h(x) = h(y). By counting collisions on both sides, }’; L2 = Yxy Cxy
Ifx =y, then Cyy, = 1. If x # y, then E[Cx,y] = Pr[CX,y = 1] < %
E[XiLf] = Xyy E[Cxy] = N+ Ty E[Cxy] = N+ N(N - 1)/(2N) < 2N

So just choose a random h in H, and checkif };_; L# < 4N, and if so, then choose
hy, ..., hy
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