Lectures 5: Hashing

David Woodruff
Carnegie Mellon University

1/26/2018

1/26/2018

Hashing

* Useful tool for
* Dictionary data structures
* Cryptography
* Complexity theory
* Streaming algorithms

* Today
* Universal hashing
* Perfect hashing

1/26/2018

Maintaining a Dictionary

* Large universe of “keys” denoted by U
* U could be all strings of ASCII characters of length at most 80

* Much smaller “dictionary”, which is a subset S of U
* S could be the set of all English words

* Want to support operations to maintain the dictionary
* Insert(x): add the key xto S
* Query(x): is the key x in S?
* Delete(x): remove the key x from S

1/26/2018

Dictionary Settings

* Static: don’t support insert and delete operations, just want to optimize your
data structure for fast query operations
* For example, the English dictionary does not change (or only very gradually)
* Could use a sorted array with binary search

* Insertion-only: just support insert and query operations

* Dynamic: support insert, delete, and query operations
* Could use a balanced search tree (AVL trees) to get O(log |S|) time per iteration

* Hashing gives an alternative approach, often the fastest and most convenient
way to solve these problems

Formal Hashing Setup

Universe U is very large
* E.g., set of ASCII strings of length 80 is 1288°

Care about a small subset S c U. Let N = |S].
¢ S could be the names of all students in this class

Our data structure is an array A of size M and a “hash function” h: U = {0, 1, ..., M-1}.

* Typically M < U, so can’t just store each key x in A[x]
* Insert(x) will try to place key x in A[h(x)]

But what if h(x) = h(y) for x # y? We let each entry of A be a linked list.
* To insert an element x into A[h(x)], insert it at the top of the list
* Hope linked lists are small

1/26/2018

1/26/2018

Implementation Details

* Hashing easy to implement

* Query(x): compute i = h(x) and walk down the list A[i] until you find x
or walk off the list

* Insert(x): place x at the top of the list A[i]

* Delete(x): remove x from the list A[i] by walking down the list

1/26/2018

How to Choose the Hash Function h?

* Want it to be unlikely that h(x) = h(y) for different keys x and y
* Want our array size M to be of size O(N), where N is number of keys

* Want to quickly compute h(x) given x
* For now, we will treat this computation as O(1) time

* How long do Query(x) and Delete(x) take?
* O(length of list A[h(x)]) time

* How long does Insert(x) take?
* O(1) time no matter what

* So how long can these lists A[h(x)] be?

1/26/2018

Bad Sets Exist for any Hash Function

* Claim: For any hash function h: U->{0, 1, 2, ..., M-1},if [U| = (N—1)M + 1,
there is a set S of N elements of U that all hash to the same location

* Proof: If every location had at most N-1 elements of U hashing to it, then we
would have |[U| < (N —-1)M

* So there’s no good hash function h that works for every S. Thoughts?

* Universal Hashing: Let’s randomly choose h!

* We show for any sequence of insert, query, and delete operations, the expected number
of operations, over a random choice of h, will be small

1/26/2018

Universal Hashing

* Definition: A randomized algorithm H for constructing a hash function
h:U->{0, 1, 2, ..., M-1} is universal if forall x # y,

Prih(0 =h@)] <

==

* We also say a set H of hash functions is a universal hash function family if
choosing h € H uniformly at random is universal

* Note the condition holds for every x # y, and the randomness is only over
the choice of h from H

[heH [hG0=h(y)| _

* Equivalently, for every x # y, we have: H]| %

1/26/2018

Universal Hashing Examples

Example 1: The following three hash families with hash functions mapping the set {a, b} to {0,1} are
universal, because at most 1/M of the hash functions in them cause a and b to collide, were M = {0, 1}|.

a b a b
hy || 0 0 hi | 0 1
hz 0 1 hz 1 0

o = o8

- O o

10

Examples that are Not Universal

P— a b c

hy 0O 0 1

h,y 0 0 ,
“d I ha |1 1 0
2 hs 1 0 1

* Note that a and b collide with probability more than 1/M = 1/2

1/26/2018

11

Universal Hashing Example

* The following hash function is universal with M = |{0,1,2}|

ho || O
h| 0
ha 1

« Note!

SN = O
- N SN

1/26/2018

12

1/26/2018

Using Universal Hashing

* Theorem: If H is universal, then for any set S € U with [S| =N, forany x €
S, if we choose h at random from H, the expected number of collisions
between x and other elements in S is at most N/M.

* Proof: Fory € Swithy # x, let Cy, = 1if h(x) = h(y), otherwise Cxy, = 0

Let Cyx = Xy+x Cxy be the total number of collisions with x
1
E[Cxy] = Pr[h(x) = h(M] < &

By linearity of expectation, E[Cx] = Xy.x E[Cxy] < %

13

1/26/2018

Using Universal Hashing

* Corollary: If H is universal, for any sequence of L insert, query, and delete
operations in which there are at most M keys in the data structure at any
time, the expected cost of the L operations for a random h € H is O(L)

* Assumes the time to compute his O(1)

* Proof: For any operation in the sequence, its expected cost is O(1) by the
last theorem, so the expected total cost is O(L) by linearity of expectation

14

But how to Construct a Universal Hash Family?

* Suppose |U| = 2" and M = 2™
* Let A be a random m x u binary matrix, and h(x) = Ax mod 2

(72

TL A _ |:|h.(:1r) = Ax
l g

8

* Claim: for x # y, Pr[h(x) = h(y)] = % =L
X

2m

1/26/2018

15

1/26/2018

But how to Construct a Universal Hash Family?

- Claim: Forx # y, Prlh(x) = h(y)] = — = im
X M 2

* Proof: A-xmod 2 = }; A;X; mod 2, where A; is the i-th column of A
If h(x) = h(y), then Ax=Ay mod 2, so A(x-y) = 0 mod 2
If X # y, there exists an i* for which x;« # y;*
Fix A; for all j # i*, which fixes b = ¥, Aj(x;—y;) mod 2
A(x-y) =0 mod 2 if and only if Aj*=b
1

1
krlAe =bl = =5y

So h(x) = Ax mod 2 is universal

16

k-wise Independent Families

* Definition: A hash function family H is k-universal if for every set of k distinct
keys X4, ..., X and every set of kvalues vy, ...,vi € {0,1,...,M — 1},

Pr[h(x,) = v; AND h(x,) = v, AND ... AND h(x) = vy] = ﬁ

* If H is 2-universal, then it is universal. Why?
* h(x) = Ax mod 2 for a random binary A is not 2-universal. Why?

* Exercise: Show Ax + b mod 2 is 2-universal, where Ain {0,1}™*™ and b €
{0,1}™ are chosen independently and uniformly at random

1/26/2018

17

1/26/2018

More Efficient Universal Hashing

* Given a key x, suppose x = [Xy, ..., Xx] where each x; € {0,1, ..., M — 1}
* Suppose M is prime

* Choose randomry,.., 1y € {0,1,...,M — 1} and define
h(x) = ryxq + ry%, + ... + rXg mod M

* Uses less randomness than matrix product

* Claim: the family of such hash functions is universal, that is,
lir[h(x) =h(y)] < %for allxandy

18

1/26/2018

More Efficient Universal Hashing

* Claim: the family of such hash functions is universal, that is,
lir[h(x) =h(y)] < %for allx #vy

* Proof: Since X # y, there is an i* for which x;+ # y;-
Let h'(X) = X4+ 1jXj, and h(x) = h’(x) + rj=x;» mod M
If h(x) = h(y), then h’(x) + rj=xj<= h’(y) + rj<y;* mod M
Sorj(Xj —y3+) = h'(y) — h'(x) mod M, or rjx = hiw%;l(x) mo

This happens with probability exactly 1/M

dM

19

1/26/2018

Perfect Hashing

* If we fix the dictionary S of size N, can we find a hash function h so that all query(x)
operations take constant time?

N

* Claim: If H is universal and M = N2, then hPl;{[no collisions in S] =

* Proof: How many pairs (x,y) in S are there?
Answer: N(N-1)/2
For each pair, the probability of a collision is at most 1/M

Pr[exists a collision]< (N(N-1)/2)/M < %

Just try a random h and check if there are any collisions
Problem: our hash table has M = N? space! How can we get O(N) space?

20

Perfect Hashing in O(N) Space — 2 Level Scheme

* Choose a hash function h: U - {1, 2, ..., N} from a universal family

* Let L; be the number of items x in S for which h(x) =i

* Choose N “second-level” hash functions hy, h,, ..., hy, where h;: U - {1, ..., L%}

By previous analysis, can
choose hash functions

hy, h,, ..., hy so that there are
no collisions, so O(1) time

Hash table size is i, _, ¥
How big is that??

1/26/2018

21

Perfect Hashing in O(N) Space — 2 Level Scheme

* Theorem: If we pick h from a universal family H, then

P Z [? > 4N] < L
h«—rH[i] -2
i=1,..,.N

* Proof: It suffices to show E[}}; L%] < 2N and apply Markov’s inequality
Let Cx, = 1if h(x) = h(y). By counting collisions on both sides, }’; L2 = Yxy Cxy
Ifx =y, then Cyy, = 1. If x # y, then E[Cx,y] = Pr[CX,y = 1] < %
E[XiLf] = Xyy E[Cxy] = N+ Ty E[Cxy] = N+ N(N - 1)/(2N) < 2N

So just choose a random h in H, and checkif };_; L# < 4N, and if so, then choose
hy, ..., hy

1/26/2018

22

