Lectures 5: Hashing

David Woodruff Carnegie Mellon University

Hashing

- Useful tool for
 - Dictionary data structures
 - Cryptography
 - Complexity theory
 - Streaming algorithms
- Today
 - Universal hashing
 - Perfect hashing

Maintaining a Dictionary

- Large universe of "keys" denoted by U
 - U could be all strings of ASCII characters of length at most 80
- Much smaller "dictionary", which is a subset S of U
 - S could be the set of all English words
- Want to support operations to maintain the dictionary
 - Insert(x): add the key x to S
 - Query(x): is the key x in S?
 - Delete(x): remove the key x from S

Dictionary Settings

- Static: don't support insert and delete operations, just want to optimize your data structure for fast query operations
 - For example, the English dictionary does not change (or only very gradually)
 - Could use a sorted array with binary search
- Insertion-only: just support insert and query operations
- Dynamic: support insert, delete, and query operations
 - Could use a balanced search tree (AVL trees) to get O(log |S|) time per iteration
- Hashing gives an alternative approach, often the fastest and most convenient way to solve these problems

Formal Hashing Setup

- Universe U is very large
 - $\bullet\,$ E.g., set of ASCII strings of length 80 is 128^{80}
- Care about a small subset $S \subset U$. Let N = |S|.
 - S could be the names of all students in this class
- Our data structure is an array A of size M and a "hash function" h: U \rightarrow {0, 1, ..., M-1}.
 - Typically $M \ll U$, so can't just store each key x in A[x]
 - Insert(x) will try to place key x in A[h(x)]
- But what if h(x) = h(y) for $x \neq y$? We let each entry of A be a linked list.
 - To insert an element x into A[h(x)], insert it at the top of the list
 - Hope linked lists are small

Implementation Details

- Hashing easy to implement
- Query(x): compute i = h(x) and walk down the list A[i] until you find x or walk off the list
- Insert(x): place x at the top of the list A[i]
- Delete(x): remove x from the list A[i] by walking down the list

How to Choose the Hash Function h?

- Want it to be unlikely that h(x) = h(y) for different keys x and y
- Want our array size M to be of size O(N), where N is number of keys
- Want to quickly compute h(x) given x
 - For now, we will treat this computation as O(1) time
- How long do Query(x) and Delete(x) take?
 - O(length of list A[h(x)]) time
- How long does Insert(x) take?
 - O(1) time no matter what
- So how long can these lists A[h(x)] be?

Bad Sets Exist for any Hash Function

- Claim: For any hash function h: U -> $\{0, 1, 2, ..., M-1\}$, if $|U| \ge (N-1)M + 1$, there is a set S of N elements of U that all hash to the same location
- Proof: If every location had at most N-1 elements of U hashing to it, then we would have $|U| \le (N-1)M$
- So there's no good hash function h that works for every S. Thoughts?
- Universal Hashing: Let's randomly choose h!
 - We show for *any* sequence of insert, query, and delete operations, the expected number of operations, over a random choice of h, will be small

Universal Hashing

• Definition: A randomized algorithm H for constructing a hash function h: U -> {0, 1, 2, ..., M-1} is universal if for all $x \neq y$, $\Pr_{h \leftarrow H}[h(x) = h(y)] \leq \frac{1}{M}$

$$\Pr_{h \leftarrow H}[h(x) = h(y)] \le \frac{1}{M}$$

- We also say a set H of hash functions is a universal hash function family if choosing $h\in H$ uniformly at random is universal
- Note the condition holds for every x ≠ y, and the randomness is only over the choice of h from H
- Equivalently, for every $x \neq y$, we have: $\frac{|h \in H \mid h(x) = h(y)|}{|H|} \leq \frac{1}{M}$

Universal Hashing Examples

Example 1: The following three hash families with hash functions mapping the set $\{a, b\}$ to $\{0, 1\}$ are universal, because at most 1/M of the hash functions in them cause a and b to collide, were $M = |\{0, 1\}|$.

	a	b
h_1	0	0
h_2	0	1

	a	b
h_1	0	1
h_2	1	0

	a	b
h_1	0	0
h_2	1	0
h_3	0	1

Examples that are Not Universal

\neg	a	b
h_1	0	0
h_3	1	1

	a	\boldsymbol{b}	\boldsymbol{c}
h_1	0	0	1
h_2	1	1	0
h_3	1	0	1

• Note that a and b collide with probability more than 1/M = 1/2

Universal Hashing Example

• The following hash function is universal with $M = |\{0,1,2\}|$

	a	b	c	
h_0	0	0	0	← Note!
h_1	0	1	2	
h_2	1	2	0	
h_3	2	0	1	

Using Universal Hashing

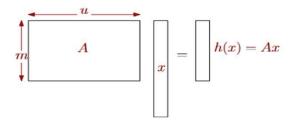
- Theorem: If H is universal, then for any set $S \subseteq U$ with |S| = N, for any $x \in S$, if we choose h at random from H, the **expected** number of collisions between x and other elements in S is at most N/M.
- Proof: For $y \in S$ with $y \neq x$, let $C_{xy} = 1$ if h(x) = h(y), otherwise $C_{xy} = 0$ Let $C_x = \sum_{y \neq x} C_{xy}$ be the total number of collisions with x $E\big[C_{xy}\big] = \Pr[h(x) = h(y)] \leq \frac{1}{M}$ By linearity of expectation, $E[C_x] = \sum_{y \neq x} E[C_{xy}] < \frac{N}{M}$

Using Universal Hashing

- Corollary: If H is universal, for any **sequence** of L insert, query, and delete operations in which there are at most M keys in the data structure at any time, the expected cost of the L operations for a random $h \in H$ is O(L)
 - Assumes the time to compute h is O(1)
- Proof: For any operation in the sequence, its expected cost is O(1) by the last theorem, so the expected total cost is O(L) by linearity of expectation

But how to Construct a Universal Hash Family?

- Suppose $|U| = 2^u$ and $M = 2^m$
- Let A be a random m x u binary matrix, and $h(x) = Ax \mod 2$



• Claim: for $x \neq y$, $\Pr_{x}[h(x) = h(y)] = \frac{1}{M} = \frac{1}{2^{m}}$

But how to Construct a Universal Hash Family?

- Claim: For $x \neq y$, $\Pr_{x}[h(x) = h(y)] = \frac{1}{M} = \frac{1}{2^{m}}$
- Proof: $A \cdot x \bmod 2 = \sum_i A_i x_i \bmod 2$, where A_i is the i-th column of A If h(x) = h(y), then Ax=Ay mod 2, so $A(x-y) = 0 \bmod 2$ If $x \neq y$, there exists an i^* for which $x_{i^*} \neq y_{i^*}$ Fix A_j for all $j \neq i^*$, which fixes $b = \sum_{j \neq i^*} A_j (x_j y_j) \bmod 2$ $A(x-y) = 0 \bmod 2$ if and only if $A_{i^*} = b$ $\Pr_{A_{i^*}}[A_{i^*} = b] = \frac{1}{2^m} = \frac{1}{M}$

So $h(x) = Ax \mod 2$ is universal

k-wise Independent Families

• Definition: A hash function family H is k-universal if for every set of k distinct keys x_1, \dots, x_k and every set of k values $v_1, \dots, v_k \in \{0, 1, \dots, M-1\}$,

$$Pr[h(x_1) = v_1 \text{ AND } h(x_2) = v_2 \text{ AND } ... \text{ AND } h(x_k) = v_k] = \frac{1}{M^k}$$

- If H is 2-universal, then it is universal. Why?
- $h(x) = Ax \mod 2$ for a random binary A is not 2-universal. Why?
- Exercise: Show Ax + b mod 2 is 2-universal, where A in $\{0,1\}^{m\ x\ n}$ and $b\in\{0,1\}^m$ are chosen independently and uniformly at random

More Efficient Universal Hashing

- Given a key x, suppose x = $[x_1, ..., x_k]$ where each $x_i \in \{0, 1, ..., M-1\}$
- Suppose M is prime
- Choose random $r_1, \dots, r_k \in \{0,1,\dots,M-1\}$ and define $h(x) = r_1x_1 + r_2x_2 + \dots + r_kx_k \bmod M$
- Uses less randomness than matrix product
- Claim: the family of such hash functions is universal, that is, $\Pr_h[h(x)=h(y)] \leq \tfrac{1}{M} \text{ for all } x \text{ and } y$

More Efficient Universal Hashing

- Claim: the family of such hash functions is universal, that is, $\Pr_h[h(x)=h(y)] \leq \frac{1}{M} \text{ for all } x \neq y$
- Proof: Since $x \neq y$, there is an i^* for which $x_{i^*} \neq y_{i^*}$ Let $h'(x) = \sum_{j \neq i^*} r_j x_j$, and $h(x) = h'(x) + r_{i^*} x_{i^*} \mod M$ If h(x) = h(y), then $h'(x) + r_{i^*} x_{i^*} = h'(y) + r_{i^*} y_{i^*} \mod M$ So $r_{i^*}(x_{i^*} y_{i^*}) = h'(y) h'(x) \mod M$, or $r_{i^*} = \frac{h'(y) h'(x)}{x_{i^*} y_{i^*}} \mod M$ This happens with probability exactly 1/M

Perfect Hashing

- If we fix the dictionary S of size N, can we find a hash function h so that all query(x) operations take constant time?
- Claim: If H is universal and M = N^2, then $\Pr_{h \leftarrow H}[\text{ no collisions in S}] \geq \frac{1}{2}$
- Proof: How many pairs (x,y) in S are there?

Answer: N(N-1)/2

For each pair, the probability of a collision is at most 1/M

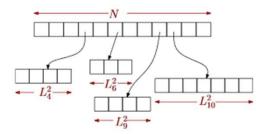
 $Pr[exists a collision] \le (N(N-1)/2)/M \le \frac{1}{2}$

Just try a random h and check if there are any collisions

Problem: our hash table has $M=N^2$ space! How can we get O(N) space?

Perfect Hashing in O(N) Space – 2 Level Scheme

- Choose a hash function $h \colon U \to \{1, 2, ... \,, N\}$ from a universal family
- Let L_i be the number of items x in S for which h(x) = i
- Choose N "second-level" hash functions $h_1, h_2, ..., h_N$, where $h_i \colon U \to \{1, ..., L_i^2\}$



By previous analysis, can choose hash functions h_1,h_2,\dots,h_N so that there are no collisions, so O(1) time

Hash table size is $\sum_{i=1,\dots,n} L_i^2$ How big is that??

Perfect Hashing in O(N) Space – 2 Level Scheme

• Theorem: If we pick h from a universal family H, then

$$\Pr_{h \leftarrow H} \left[\sum_{i=1,...,N} L_i^2 > 4N \right] \le \frac{1}{2}$$

• Proof: It suffices to show $E[\sum_i L_i^2] < 2N$ and apply Markov's inequality Let $C_{x,y} = 1$ if h(x) = h(y). By counting collisions on both sides, $\sum_i L_i^2 = \sum_{x,y} C_{x,y}$ If x = y, then $C_{x,y} = 1$. If $x \neq y$, then $E[C_{x,y}] = Pr[C_{x,y} = 1] \leq \frac{1}{N}$ $E[\sum_i L_i^2] = \sum_{x,y} E[C_{x,y}] = N + \sum_{x \neq y} E[C_{x,y}] = N + N(N-1)/(2N) < 2N$

So just choose a random h in H, and check if $\sum_{i=1,\dots,n}L_i^2\leq 4N,$ and if so, then choose h_1,\dots,h_N