Here are the main points of the lecture:

1 Linear Sketches allow us to Handle Updates

- 1. Want to keep track of some vector $x^t \in \mathbb{R}^n$ that is changing over time. Each time some update Δ_t arrives, and then $x^{t+1} \leftarrow x^t + \Delta_t$.
- 2. A (linear) sketch is a short fat matrix $S: \mathbb{R}^n \to \mathbb{R}^k$ where think of $k \ll n$. So instead of maintaining $x^t \in \mathbb{R}^n$ explicitly, we maintain the sketch $Sx^t \in \mathbb{R}^k$.
- 3. The advantage of this linear sketch is that if we know $y^t := Sx^t$, then $y^{t+1} \leftarrow y^t + (S\Delta_t)$. And if we can compute the sketch $S\Delta_t$ of the "update" vector Δ_t quickly and in little space, we're all set. That's what we will do.

2 Maintaining the Euclidean norm of a vector

- 1. Want to maintain some info so that we can answer question: what is $||x^t||^2$? I.e., want to output some estimate Z such that $Z \in (1 \pm \epsilon) ||x^t||^2$
- 2. We maintain two hash functions: one maps coordinates of x into k bins: i.e., $h:[n] \to [k]$, it is a 2-wise independent hash function. The other maps each coordinate into random bits: $\sigma:[n] \to \{-1,1\}$, which is 4-wise independent hash function.
- 3. This gives a sketch matrix $S \in \{-1, 1\}^{k \times n}$, where the i^{th} column has a single non-zero entry in the $h(i)^{th}$ row. This entry has value $\sigma(i)$.

drawimageherelater.

4. Now we claim that $(Sx)^2$ is a good estimate of $||x||^2$. Why? First, let's consider $E[(Sx)^2]$.

$$\begin{aligned} \mathbf{E}[(Sx)^2] &= \mathbf{E}\left[\sum_{j=1}^k \left(\sum_{i\in[n]} \delta(h(i) = j)\sigma(i)x_i\right)^2\right] \\ &= \mathbf{E}\left[\sum_{j=1}^k \sum_{i,i'\in[n]} \delta(h(i) = j) \cdot \delta(h(i') = j) \cdot \sigma(i) \ x_i \ \sigma(i') \ x_{i'}\right] \\ &= \sum_{j=1}^k \sum_{i,i'\in[n]} \mathbf{E}[\delta(h(i) = j) \cdot \delta(h(i') = j)] \cdot \mathbf{E}[\sigma(i)\sigma(i')] \ x_i \ x_{i'} \\ &= \sum_{j=1}^k \sum_{i,i'\in[n]} \Pr[h(i) = j) \wedge h(i') = j] \cdot \mathbf{E}[\sigma(i)\sigma(i')] \ x_i \ x_{i'} \end{aligned}$$

But $E[\sigma_i] = 0$, since it takes on value -1 and 1 with equal probability. And since the hash function σ is pairwise independent, the expectation will be zero except when i = i', when it is 1! So we get

$$= \sum_{j=1}^{k} \sum_{i \in [n]} \Pr[h(i) = j)] \cdot x_i^2$$

And finally, since $\Pr[h(i) = j] = 1/k$, we get $\sum_{j=1}^{k} ||x||^2/k = ||x||^2$. So the expectation of our estimator $(Sx)^2$ is indeed correct!

5. The expectation being correct is fine, what about the variance? In reci we will show that the variance is also controlled, i.e.,

$$Var((Sx)^2) = 2||x||^4/k.$$
(1)

This is where we will use the 4-wise independence of the hash function σ , and the pairwise independence of the function h, because the above argument only used the pairwise independence of σ !

6. Now if we know the mean is correct, and the variance is bounded as in (1), we can use Chebyshev's inequality.¹ This says that we are close to the mean with high probability. Recall it says that for a random variable Z with mean μ and variance σ^2 ,

$$\Pr[|Z - \mu| \ge \lambda] \le \frac{\sigma^2}{\lambda^2}.$$

(Please don't confuse this variance symbol σ with the hash function σ .) In our case the r.v. is $Z = (Sx)^2$, with mean $\mu = ||x||^2$, and variance at most $2||x||^4/k$, then

$$\Pr[|Z - \mu| \ge \varepsilon \mu] \le \frac{2\|x\|^4/k}{\varepsilon^2 \mu^2} = \frac{2\|x\|^4/k}{\varepsilon^2 \|x\|^4} = \frac{2}{k\varepsilon^2}.$$

So if we want a failure probability of 1/10, say, then we can set $k = \frac{20}{\varepsilon^2}$.

- 7. In summary, the sketch S we defined (using the hash functions h, σ , gives us a $(1 \pm \varepsilon)$ estimate of the squared Euclidean length of a vector with probability at least 9/10, as long as $k \geq 20/\varepsilon^2$.
- 8. Note that instead of maintaining $x \in \mathbb{R}^n$, we just needed to store the sketch $Sx \in \mathbb{R}^k$, where $k \approx 20/\varepsilon^2$. That's a huge reduction in space!! Also, it's a linear sketch, so we can maintain this sketch as the vector x changes via updates.

3 Finding a Non-zero Coordinate of a Vector

1. Now we show a linear sketch that allows us to find a non-zero coordinate of a vector. Since this is a linear sketch, we can use it to find a non-zero coordinate of the current vector, as the vector changes via updates.

¹Recall how to prove this too: $\Pr[|Z - \mu| \ge \lambda] = \Pr[(Z - \mu)^2 \ge \lambda^2] \le \frac{\mathbb{E}[(Z - \mu)^2]}{\lambda^2}$, where the inequality is Markov's inequality. Now the numerator is just the definition of variance σ^2 .

3.1 1-Sparse Finder

We start by designing a procedure which, with probability 1 - 1/poly(n), has the following guarantees:

- if $x \in \mathbb{R}^n$ is 1-sparse, i.e., has exactly one non-zero entry x_i , the procedure returns the identity i.
- otherwise, the procedure outputs FAIL.

The algorithm starts by choosing a prime p = poly(n), which can be deterministically chosen to be say, between n^2 and $2n^2$. We also choose a random integer $z \in \{0, 1, 2, ..., p-1\}$.

We compute the three linear sketches:

- 1. $A = \sum_{i} x_{i}$.
- 2. $B = \sum_{i} x_i \cdot i$.
- 3. $C = \sum_{i} x_i z^i \mod p$.

If we're in a stream, we just maintain A, B, and C in the stream. After processing the stream, we then check if B/A is in the set $\{1, 2, ..., n\}$. If it is not, then we immediately know that B/A is not 1-sparse and we can output FAIL.

Otherwise, we check if $C = A \cdot z^{B/A} \mod p$. Notice that if x is 1-sparse with non-zero item i, then $C = x_i z^i \mod p$, while $A = x_i$ and $z^{B/A} = z^i$, and so indeed $C = A \cdot z^{B/A} \mod p$ as desired.

On the other hand, suppose x is not 1-sparse. Then the claim is that we output FAIL with probability at least 1-1/poly(n). To see this, define the polynomial $q(y) = \sum_i x_i y^i - A \cdot y^{B/A} \mod p$, where y is a formal variable. Notice that $B/A \in \{1, 2, \dots, n\}$, as otherwise we would have already output FAIL. Moreover, q(y) cannot be the all zeros polynomial, since $\sum_i x_i y^i$ has at least two non-zero terms, and both cannot cancel with the $A \cdot y^{B/A}$ monomial.

Hence, q(y) is a non-zero polynomial of degree at most n modulo p, and it is well-known that such a polynomial can have at most n roots, i.e., y for which q(y) = 0. Since z was a random integer in $\{0, 1, 2, \ldots, p-1\}$, the probability that z is a root of q is at most $\frac{n}{p}$, which since $p \ge n^2$, say, is at most $\frac{1}{n}$. Consequently, with probability $1 - \frac{1}{n}$, the test "does $C = A \cdot z^{B/A} \mod p$?" fails and we output FAIL, as we should in this case.

Notice that it takes $O(\log n)$ bits to store A, B, and C, since each is a number specified with $O(\log n)$ bits. Let us call the above algorithm 1-Sparse-Finder.

3.2 Outputting a Non-Zero of a k-Sparse Vector

We next show how to use 1-Sparse-Finder to find a non-zero item of x when x is not 1-sparse, but rather has at most k non-zero entries. The main idea is to use hashing.

Let h be a 2-universal hash function from [n] to [10k], where we think of the integers $1, 2, 3, \ldots, 10k$ as hash buckets. In the j-th hash bucket, we run 1-Sparse Finder on the set of indices i of x for which h(i) = j. If any of the 1-Sparse Finder algorithms outputs an index i, then we output an i returned by one of the 1-Sparse Finder algorithms. Note that more than one 1-Sparse Finder algorithm may output an index i; in that case we just choose to output an index output by an arbitrary one of

these 1-Sparse Finder algorithms. If every single 1-Sparse Finder algorithm outputs FAIL, then we output FAIL.

We now analyze the above algorithm, which we call k-Sparse Finder. Notice that each 1-Sparse Finder algorithm is incorrect with probability at most 1/n, so by a union bound the probability that any of them is incorrect is at most (10k)/n, and we condition on none of these algorithms being incorrect; call this event \mathcal{F} , which we condition on. Note that being incorrect is different from the algorithm outputting FAIL; outputting FAIL indicates that the input to the 1-Sparse Finder is not 1-sparse, assuming the algorithm is correct.

The main concern one might have is that all the non-zero items of x collide in a bucket, or more precisely, each of the 10k buckets is not 1-sparse. To show this cannot happen, consider an arbitrary non-zero entry i of x, and suppose h(i) = j. Now consider some non-zero entry $i' \neq i$. Since h is 2-universal, $\Pr[h(i') = h(i)] \leq \frac{1}{10k}$. By a union bound, the probability that there exists an $i' \neq i$ with $x_{i'} \neq 0$ for which h(i') = h(i) is at most $\frac{k-1}{10k} < \frac{1}{10}$. Hence, with probability at least 9/10, i is isolated, meaning no other non-zero entries of x hash to the same bucket as i. It follows that since we conditioned on \mathcal{F} occurring, 1-Sparse Finder succeeds in the h(i)-th bucket, and thus will output i. It follows that we will output a non-zero item of x with probability at least 9/10, given \mathcal{F} (which in turn holds with probability at least $1 - (10k)/n^2$).

In summary, we have an algorithm which, if x has at most k non-zero items, uses $O(k \log n)$ bits of space and succeeds in outputting an item with probability at least 9/10. We call this algorithm k-Sparse Finder. When k-Sparse Finder does output an item i though, we are guaranteed (except with probability at most (10k)/n) that $x_i \neq 0$.

3.3 Subsampling

The above gives $O(k \log n)$ bits of space, which is great if k is small, but not so good if k is large. The next main idea is to use subsampling, whereby we uniformly sample subsets of coordinates of x in a nested sequence of subsets. More precisely, we start with $S_0 = [n]$. We then form S_1 by independently including each item of S_0 with probability 1/2, then form S_2 by independently including each item of S_1 with probability 1/2, etc. We let x_{S_i} denote x restricted to coordinates in S_i ; more precisely, x_{S_i} is n-dimensional, just like x, but $(x_{S_i})_j = x_j$ if $j \in S_i$, and $(x_{S_i})_j = 0$ otherwise.

We now analyze the subsampling process. Suppose x has k non-zero entries. What's the expected number of non-zero entries in x_{S_i} ? To analyze this, for each non-zero entry j in x, let $Z_j = 1$ if $j \in S_i$, and $Z_i = 0$ otherwise. Let $Z = \sum_j Z_j$ be the total number of non-zero entries of x included in S_i . Then $\mathbf{E}[Z] = k \cdot \mathbf{E}[Z_j] = \frac{k}{2^j}$. Also, since the Z_j are independent, $\mathbf{Var}[Z] = \sum_j \mathbf{Var}[Z_j] = k \cdot \mathbf{Var}[Z_1] = k \cdot (\frac{1}{2^i}) \left(1 - \frac{1}{2^i}\right) \leq \frac{k}{2^i}$.

Now, notice if $i = \lfloor \log_2 k \rfloor - 5$, then $32 \leq \mathbf{E}[Z] < 64$ and $\mathbf{Var}[Z] < 64$. This statement requires $i \geq 0$, but observe that if i < 0, then this means k = O(1), and our earlier k-Sparse Finder for constant k would succeed in finding a non-zero entry of x and use only $O(\log n)$ bits of space. So, assuming $i \geq 0$, we in fact have, by Chebyshev's inequality, that

$$\Pr[|Z - \mathbf{E}[Z]| \ge 32] \le \frac{\mathbf{Var}[Z]}{32^2} \le \frac{1}{16}.$$

Hence, with probability at least 15/16, we have that $1 \le Z < 96$, using that $32 \le \mathbf{E}[Z] < 64$. It follows that if we run a k'-sparse algorithm with k' = 96 on x_{S_i} , we recover a non-zero item of x_{S_i} with probability at least 1 - 1/16 - 1/10 - (10k)/n > 4/5, where the 1/16 error probability comes

from the fact that the subsampling might not have between 1 and 96 non-zero items, the 1/10 error probability comes from no item being isolated in the 96-Sparse Finder algorithm, and the (10k)/n comes from one of the 1-Sparse Finder algorithms failing.

Hence, for the above special choice of i, we succeed with probability at least 4/5 in outputting a non-zero item of a vector x, but we don't know i in advance, so what can we do?

The idea is to run our k'-Sparse Finder algorithm on every x_{S_i} simultaneously in parallel. Every time we see a stream update $x_j \leftarrow x_j + \Delta_t$ for some coordinate j and increment/decrement amount Δ_t , we feed this stream update into a k'-Sparse Finder algorithm for processing x_{S_ℓ} for each ℓ for which $j \in S_\ell$. Note that we are running $O(\log n)$ k'-Sparse Finder algorithms in parallel, and feeding each stream update to a subset of them.

Now there are $O(\log n)$ different k'-Sparse Finder algorithms, each running 10k' instances of 1-Sparse Finder. The probability that any of the 1-Sparse Finder algorithms for any of these algorithms is incorrect is therefore at most $O(\log n) \cdot (10k')/n = O(\log n)/n$, and thus we can condition on all of these being correct. Thus, if there is at least one algorithm processing an $x_{S_{\ell}}$ which succeeds in outputting a coordinate j, we output an arbitrary such coordinate. It follows that we succeed in outputting a non-zero coordinate of x with probability at least $1 - 1/16 - 1/10 - O(\log n)/n > 4/5$. Moreover, our total space is $O(\log n) \cdot O(k' \log n) = O(\log^2 n)$ bits.