
15-451/651: Design & Analysis of Algorithms May 1, 2018
Lecture #24: Sketching last changed: May 1, 2018

Here are the main points of the lecture:

1 Linear Sketches allow us to Handle Updates

1. Want to keep track of some vector xt ∈ Rn that is changing over time. Each time some
update ∆t arrives, and then xt+1 ← xt + ∆t.

2. A (linear) sketch is a short fat matrix S : Rn → Rk where think of k � n. So instead of
maintaining xt ∈ Rn explicitly, we maintain the sketch Sxt ∈ Rk.

3. The advantage of this linear sketch is that if we know yt := Sxt, then yt+1 ← yt + (S∆t).
And if we can compute the sketch S∆t of the “update” vector ∆t quickly and in little space,
we’re all set. That’s what we will do.

2 Maintaining the Euclidean norm of a vector

1. Want to maintain some info so that we can answer question: what is ‖xt‖2? I.e., want to
output some estimate Z such taht Z ∈ (1± ε)‖xt‖2

2. We maintain two hash functions: one maps coordinates of x into k bins: i.e., h : [n] → [k],
it is a 2-wise independent hash function. The other maps each coordinate into random bits:
σ : [n]→ {−1, 1}, which is 4-wise independent hash function.

3. This gives a sketch matrix S ∈ {−1, 1}k×n, where the ith column has a single non-zero entry
in the h(i)th row. This entry has value σ(i).

drawimageherelater.

4. Now we claim that (Sx)2 is a good estimate of ‖x‖2. Why? First, let’s consider E[(Sx)2].

E[(Sx)2] = E

 k∑
j=1

∑
i∈[n]

δ(h(i) = j)σ(i)xi

2
= E

 k∑
j=1

∑
i,i′∈[n]

δ(h(i) = j) · δ(h(i′) = j) · σ(i) xi σ(i′) xi′


=

k∑
j=1

∑
i,i′∈[n]

E[δ(h(i) = j) · δ(h(i′) = j)] · E[σ(i)σ(i′)] xi xi′

=
k∑

j=1

∑
i,i′∈[n]

Pr[h(i) = j) ∧ h(i′) = j] · E[σ(i)σ(i′)] xi xi′

1

But E[σi] = 0, since it takes on value −1 and 1 with equal probability. And since the hash
function σ is pairwise independent, the expectation will be zero except when i = i′, when it
is 1! So we get

=
k∑

j=1

∑
i∈[n]

Pr[h(i) = j)] · x2i

And finally, since Pr[h(i) = j] = 1/k, we get
∑k

j=1 ‖x‖2/k = ‖x‖2. So the expectation of our

estimator (Sx)2 is indeed correct!

5. The expectation being correct is fine, what about the variance? In reci we will show that the
variance is also controlled, i.e.,

Var((Sx)2) = 2‖x‖4/k. (1)

This is where we will use the 4-wise independence of the hash function σ, and the pairwise
independence of the function h, because the above argument only used the pairwise indepen-
dence of σ!

6. Now if we know the mean is correct, and the variance is bounded as in (1), we can use
Chebyshev’s inequality.1 This says that we are close to the mean with high probability.
Recall it says that for a random variable Z with mean µ and variance σ2,

Pr[|Z − µ| ≥ λ] ≤ σ2

λ2
.

(Please don’t confuse this variance symbol σ with the hash function σ.) In our case the r.v.
is Z = (Sx)2, with mean µ = ‖x‖2, and variance at most 2‖x‖4/k, then

Pr[|Z − µ| ≥ εµ] ≤ 2‖x‖4/k
ε2µ2

=
2‖x‖4/k
ε2‖x‖4

=
2

kε2
.

So if we want a failure probability of 1/10, say, then we can set k = 20
ε2

.

7. In summary, the sketch S we defined (using the hash functions h, σ, gives us a (1 ± ε)
estimate of the squared Euclidean length of a vector with probability at least 9/10, as long
as k ≥ 20/ε2.

8. Note that instead of maintaining x ∈ Rn, we just needed to store the sketch Sx ∈ Rk, where
k ≈ 20/ε2. That’s a huge reduction in space!! Also, it’s a linear sketch, so we can maintain
this sketch as the vector x changes via updates.

3 Finding a Non-zero Coordinate of a Vector

1. Now we show a linear sketch that allows us to find a non-zero coordinate of a vector. Since
this is a linear sketch, we can use it to find a non-zero coordinate of the current vector, as
the vector changes via updates.

1Recall how to prove this too: Pr[|Z − µ| ≥ λ] = Pr[(Z − µ)2 ≥ λ2] ≤ E[(Z−µ)2]
λ2 , where the inequality is Markov’s

inequality. Now the numerator is just the definition of variance σ2.

2

https://en.wikipedia.org/wiki/Chebyshev's_inequality

3.1 1-Sparse Finder

We start by designing a procedure which, with probability 1 − 1/poly(n), has the following guar-
antees:

• if x ∈ Rn is 1-sparse, i.e., has exactly one non-zero entry xi, the procedure returns the identity
i.

• otherwise, the procedure outputs FAIL.

The algorithm starts by choosing a prime p = poly(n), which can be deterministically chosen to be
say, between n2 and 2n2. We also choose a random integer z ∈ {0, 1, 2, . . . , p− 1}.
We compute the three linear sketches:

1. A =
∑

i xi.

2. B =
∑

i xi · i.

3. C =
∑

i xiz
i mod p.

If we’re in a stream, we just maintain A,B, and C in the stream. After processing the stream, we
then check if B/A is in the set {1, 2, . . . , n}. If it is not, then we immediately know that B/A is
not 1-sparse and we can output FAIL.

Otherwise, we check if C = A · zB/A mod p. Notice that if x is 1-sparse with non-zero item i, then
C = xiz

i mod p, while A = xi and zB/A = zi, and so indeed C = A · zB/A mod p as desired.

On the other hand, suppose x is not 1-sparse. Then the claim is that we output FAIL with probability
at least 1− 1/poly(n). To see this, define the polynomial q(y) =

∑
i xiy

i −A · yB/A mod p, where
y is a formal variable. Notice that B/A ∈ {1, 2, . . . , n}, as otherwise we would have already output
FAIL. Moreover, q(y) cannot be the all zeros polynomial, since

∑
i xiy

i has at least two non-zero
terms, and both cannot cancel with the A · yB/A monomial.

Hence, q(y) is a non-zero polynomial of degree at most n modulo p, and it is well-known that such
a polynomial can have at most n roots, i.e., y for which q(y) = 0. Since z was a random integer in
{0, 1, 2, . . . , p− 1}, the probability that z is a root of q is at most n

p , which since p ≥ n2, say, is at

most 1
n . Consequently, with probability 1− 1

n , the test “does C = A · zB/A mod p?” fails and we
output FAIL, as we should in this case.

Notice that it takes O(log n) bits to store A, B, and C, since each is a number specified with
O(log n) bits. Let us call the above algorithm 1-Sparse-Finder.

3.2 Outputting a Non-Zero of a k-Sparse Vector

We next show how to use 1-Sparse-Finder to find a non-zero item of x when x is not 1-sparse, but
rather has at most k non-zero entries. The main idea is to use hashing.

Let h be a 2-universal hash function from [n] to [10k], where we think of the integers 1, 2, 3, . . . , 10k
as hash buckets. In the j-th hash bucket, we run 1-Sparse Finder on the set of indices i of x for which
h(i) = j. If any of the 1-Sparse Finder algorithms outputs an index i, then we output an i returned
by one of the 1-Sparse Finder algorithms. Note that more than one 1-Sparse Finder algorithm may
output an index i; in that case we just choose to output an index output by an arbitrary one of

3

these 1-Sparse Finder algorithms. If every single 1-Sparse Finder algorithm outputs FAIL, then we
output FAIL.

We now analyze the above algorithm, which we call k-Sparse Finder. Notice that each 1-Sparse
Finder algorithm is incorrect with probability at most 1/n, so by a union bound the probability
that any of them is incorrect is at most (10k)/n, and we condition on none of these algorithms
being incorrect; call this event F , which we condition on. Note that being incorrect is different
from the algorithm outputting FAIL; outputting FAIL indicates that the input to the 1-Sparse Finder
is not 1-sparse, assuming the algorithm is correct.

The main concern one might have is that all the non-zero items of x collide in a bucket, or more
precisely, each of the 10k buckets is not 1-sparse. To show this cannot happen, consider an arbitrary
non-zero entry i of x, and suppose h(i) = j. Now consider some non-zero entry i′ 6= i. Since h is
2-universal, Pr[h(i′) = h(i)] ≤ 1

10k . By a union bound, the probability that there exists an i′ 6= i

with xi′ 6= 0 for which h(i′) = h(i) is at most k−1
10k < 1

10 . Hence, with probability at least 9/10, i
is isolated, meaning no other non-zero entries of x hash to the same bucket as i. It follows that
since we conditioned on F occurring, 1-Sparse Finder succeeds in the h(i)-th bucket, and thus will
output i. It follows that we will output a non-zero item of x with probability at least 9/10, given
F (which in turn holds with probability at least 1− (10k)/n2).

In summary, we have an algorithm which, if x has at most k non-zero items, uses O(k log n) bits
of space and succeeds in outputting an item with probability at least 9/10. We call this algorithm
k-Sparse Finder. When k-Sparse Finder does output an item i though, we are guaranteed (except
with probability at most (10k)/n) that xi 6= 0.

3.3 Subsampling

The above gives O(k log n) bits of space, which is great if k is small, but not so good if k is large.
The next main idea is to use subsampling, whereby we uniformly sample subsets of coordinates
of x in a nested sequence of subsets. More precisely, we start with S0 = [n]. We then form S1
by independently including each item of S0 with probability 1/2, then form S2 by independently
including each item of S1 with probability 1/2, etc. We let xSi denote x restricted to coordinates
in Si; more precisely, xSi is n-dimensional, just like x, but (xSi)j = xj if j ∈ Si, and (xSi)j = 0
otherwise.

We now analyze the subsampling process. Suppose x has k non-zero entries. What’s the expected
number of non-zero entries in xSi? To analyze this, for each non-zero entry j in x, let Zj = 1 if
j ∈ Si, and Zi = 0 otherwise. Let Z =

∑
j Zj be the total number of non-zero entries of x included

in Si. Then E[Z] = k · E[Zj] = k
2i

. Also, since the Zj are independent, Var[Z] =
∑

j Var[Zj] =

k ·Var[Z1] = k
(
1
2i

) (
1− 1

2i

)
≤ k

2i
.

Now, notice if i = blog2 kc − 5, then 32 ≤ E[Z] < 64 and Var[Z] < 64. This statement requires
i ≥ 0, but observe that if i < 0, then this means k = O(1), and our earlier k-Sparse Finder for
constant k would succeed in finding a non-zero entry of x and use only O(log n) bits of space. So,
assuming i ≥ 0, we in fact have, by Chebyshev’s inequality, that

Pr[|Z −E[Z]| ≥ 32] ≤ Var[Z]

322
≤ 1

16
.

Hence, with probability at least 15/16, we have that 1 ≤ Z < 96, using that 32 ≤ E[Z] < 64. It
follows that if we run a k′-sparse algorithm with k′ = 96 on xSi , we recover a non-zero item of xSi
with probability at least 1− 1/16− 1/10− (10k)/n > 4/5, where the 1/16 error probability comes

4

from the fact that the subsampling might not have between 1 and 96 non-zero items, the 1/10 error
probability comes from no item being isolated in the 96-Sparse Finder algorithm, and the (10k)/n
comes from one of the 1-Sparse Finder algorithms failing.

Hence, for the above special choice of i, we succeed with probability at least 4/5 in outputting a
non-zero item of a vector x, but we don’t know i in advance, so what can we do?

The idea is to run our k′-Sparse Finder algorithm on every xSi simultaneously in parallel. Every
time we see a stream update xj ← xj +∆t for some coordinate j and increment/decrement amount
∆t, we feed this stream update into a k′-Sparse Finder algorithm for processing xS` for each ` for
which j ∈ S`. Note that we are running O(log n) k′-Sparse Finder algorithms in parallel, and feeding
each stream update to a subset of them.

Now there areO(log n) different k′-Sparse Finder algorithms, each running 10k′ instances of 1-Sparse
Finder. The probability that any of the 1-Sparse Finder algorithms for any of these algorithms is
incorrect is therefore at most O(log n) · (10k′)/n = O(log n)/n, and thus we can condition on all
of these being correct. Thus, if there is at least one algorithm processing an xS` which succeeds in
outputting a coordinate j, we output an arbitrary such coordinate. It follows that we succeed in
outputting a non-zero coordinate of x with probability at least 1−1/16−1/10−O(log n)/n > 4/5.
Moreover, our total space is O(log n) ·O(k′ log n) = O(log2 n) bits.

5

	Linear Sketches allow us to Handle Updates
	Maintaining the Euclidean norm of a vector
	Finding a Non-zero Coordinate of a Vector
	1-Sparse Finder
	Outputting a Non-Zero of a k-Sparse Vector
	Subsampling

