Lectures 24 and 25:
Sketching

David Woodruff
Carnegie Mellon University

Some slides from Jonathan Davis and Andrew McGregor

Outline

 Sketching model
* Estimating the Euclidean norm of a vector
* Finding a non-zero coordinate of a vector

* Graph sketching
* Boruvka’s spanning tree algorithm
* Finding a spanning tree from a sketch

Sketching

* Random linear projection S: R™ — RX that preserves properties of any
x € R™ with high probability ,where k < n

()

\)

* Matrix S does not depend on x, e.g., S could be a random matrix
(require the entries of S be O(log n) bits)

Application: Streams with Deletions

* n-dimensional vector x initialized to O™

* Stream of updates x; < x; + A for A, in {-1,1}

* One pass over the stream, have small memory

* Given S - x and update x; < x; + 4;, replace S - x with S - x + S - ¢; - 4

* Memory to store S - x is (# of rows of S)- log n bits
* Also need to store S, which typically can be stored implicitly

Outline

 Sketching Model
* Estimating the Euclidean norm of a vector
* Finding a non-zero coordinate of a vector

* Graph sketching
* Boruvka’s spanning tree algorithm
* Finding a spanning tree from a sketch

Example: Estimating the Norm of a Vector

* For x € RY, its squared Euclidean norm is |x|? = ¥}, x{
* Find a number Z for which (1 — €)|x|? < Z < (1 + €)[x]?
* Choose a 2-wise independent hash function h: [n] -> [K]

* Choose a 4-wise independent hash function o: [n] = {—1,1}

2iniy=2 Oi X

CountSketch

« CountSketch is a linear map S: R® — RK
* Arow iof Sis a hash bucket, and (Sx); is the value in the bucket

* Output |Sx|?

+ E[ISxI%] = B[%,(%;8(h(D) = Do) x0)?]
Z Z X E[S(h(D) = DS(h(I) = DoDo(i)]
= Z ZWX xy E[8(h(i) = j)8(h(i") =j)] - E[o() - o(i")]

DL
k

CountSketch
* In recitation, will show Var[|Sx|?] = O(|x|*/k)

* By Chebyshev’s inequality,
Var[lelZ]

Pr[|ISx|? — |x]?| > €|x|?]| < prowded k=0(5)

IfShask = G)(eiz) rows, can estimate |x| from Sx up to a (1 + €)-
factor with probability at least 9/10

Outline

 Sketching Model
* Estimating the Euclidean norm of a vector
* Finding a non-zero coordinate of a vector

* Graph sketching
* Boruvka’s spanning tree algorithm
* Finding a spanning tree from a sketch

A 1-Sparse Recovery Algorithm

* n-dimensional vector x initialized to O™

* Stream of updates x; < x; + A for A, in {-1,1}

* Promised at all times, —poly(n) < x; < poly(n)

* Want a procedure which with probability 1-1/poly(n),
* if xis 1-sparse, i.e., has exactly one non-zero entry x;, it returns i

» otherwise outputs FAIL

A 1-Sparse Recovery Algorithm

* Let p = poly(n) be a random prime, and z a random integer mod p
MaintainA=Y:x;,B= Y:x;-i,and C = Y. x; - z'mod p

 If B/Ais notin {1, 2, ..., n}, output FAIL

e Else if C = A - zB/A mod p, output B/A. Otherwise output FAIL

e Claim: If x is 1-sparse, we succeed. Why?

* Claim: If x not 1-sparse, we output FAIL with probability 1-1/poly(n)

* Proof: If B/Ais notin {1, 2, ..., n}, we output FAIL

* Else, B/Aisin {1, 2, ..., n}, and let q(y) = Zixiyi —A- yB/A mod p

* g(y) is a degree at most n polynomial, and so has at most n roots. The
chance that z is one of them is at most n/p = 1/poly(n)

Outputting a Non-Zero Coordinate of a Vector
* MaintainA=Y.%;,B= Y:x;-i,and C = Y.x;-z'mod p
* O(log n) bits of space
* If x is 1-sparse, output single non-zero coordinate
» Otherwise, with probability 1-1/poly(n), output FAIL
 Call this algorithm 1-Sparse-Finder

* Can we use 1-Sparse-Finder to find a non-zero item of x if x is not 1-sparse?

Outputting a Non-Zero Coordinate of a k-Sparse Vector

* If x is k-sparse, i.e., has k non-zero entries, use hashing
e Let h be a 2-universal hash function from [n] to [10k]

Xy [Xo [X3 [X4 |X5 |Xg [X7 |Xg |...[X

* In the j-th hash bucket, run 1-Sparse Finder

k-Sparse Algorithm Analysis

In each bucket, find a non-zero entry i or output FAIL, with probability 1-1/poly(n)
What if all non-zero items of x collide in a bucket?
Consider a non-zero entry i of x

Since h is 2-universal, with probability at least 1-k/(10k) = 9/10,
h(i) € th(j) | j # iand x; # 0}

With 9/10 probability, we output a non-zero entry i of x

We know when we fail to output a non-zero entry (except with probability 1/poly(n))

Reducing the Space
* Have an algorithm which, if x is k-sparse, outputs a non-zero item or says FAIL
e Qutputs a non-zero item with probability at least 9/10
e Use O(k log n) bits of space

* Good if k is small, but how to reduce the space for large k?

Subsampling

T T Te T T T Tn Uniformly sample
L A A A A A O the coordinates
as nested subsets
X4 Xe X Xg [Il] —_ SO) Sl) SZ 2D e I S]ng n
Include each item from S;_; in §;
independently with probability 1/2
X1 | X6

Xs. Is X restricted to coordinates in S;

Algorithm for Finding a Non-Zero Item

If x has k non-zero entries, what’s the expected number of non-zero entries in Xg. ?
* For each non-zero entry jin x, letZ; = 1ifj € §;, and Z; = 0 otherwise
* Z — Z] Z])
k
E[Z] = k- E[Z;] = -

« Var[Z] = Zj Var[Zj] =k -Var[Z,;] =k () (1 — —)

Ifi = |log, k| —5,then 32 < E[Z] < 64 and Var[Z] < 64

Var|Z] < 1

322 T 16

If we run a k’-sparse algorithm with k’ = 96 on X, we recover a non-zero item of

Xs; with probability at least 1-1/16 — 1/10 > 4/5, or output FAIL

But we don’t know i?

k
21

By Chebyshev’s inequality, Pr[|Z — E[Z]| = 32] <

Algorithm for Finding a Non-Zero Item

* Run a k’=96-sparse vector algorithm on every Xg. !

* For each Xg., our algorithm either returns a non-zero item of
XS, and hence of x, or outputs FAIL

* Fori = [log, k| — 5, with probability at least 4/5, we output a
non-zero item of Xg., and hence of x

e Space is (log, n) - O(k’ logn) = O(log? n) bits!

Outline

 Sketching Model
* Estimating the Euclidean norm of a vector
* Finding a non-zero coordinate of a vector

* Graph sketching
* Boruvka’s spanning tree algorithm
* Finding a spanning tree from a sketch

Sketching Graphs

Are there sketches for graphs? A is the n x n adjacency matrix of a graph G
* (Ag)ij = 1if{i,j}isan edge, and (Ag);; = 0 otherwise

[

|

\

}

[

) — answer

* |sthere a distribution on matrices S with a small number of rows so that you can

output a spanning tree of G, given SAg, with high probability?

Application: Graph Streams

Want to process a graph stream, where we see the edges of a graph ey,
an arbitrary order. Assume the vertices are labeled 1, 2, ..., n.

Make 1 pass over the stream
Trivially store stream using O(n?) bits of memory.

Want to use n - poly(log n) bits of memory

How would you compute a spanning forest?

e, € 1N

Computing a Spanning Forest

* For each edge e in the stream

e |f , store edge e

. is “doesn’t form a cycle”

 Store at most n-1 edges, so O(n log n) bits of memory

* But what if you are allowed to delete edges? This is called a dynamic stream

Handling Deletions with Sketching
* Given S - Ag, if eis deleted, replace it withS-Ag —S- A =S - Ag_e

* Memory to store S - Ag is (# of rows of S)- n - log n bits
* Also need to store S, which is (# of rows of S)- n - log n bits

e Goal: find a distribution on matrices S with a small # of rows so that
given S - A, can output a spanning tree of G with high probability

* Theorem: there is a distribution on S with O(log? n) rows!

Parallel Computing

Input: G=(V,E)

Y

-
s & PP “oy < BY
i - T — —

SAq, SA,

SAG — SAGl + SAGZ + SAG3 + SAG4

Outline

 Sketching Model
* Estimating the Euclidean norm of a vector
* Finding a non-zero coordinate of a vector

* Graph sketching
* Boruvka’s spanning tree algorithm
* Finding a spanning tree from a sketch

Boruvka’s Spanning Tree Algorithm (Modified)
e Assume input graph is connected
* |nitialize edgeset E’ to @
» Create a list of n groups of vertices, each initialized to a single vertex

* While the list has more than one group
* For each group G, include in E’ an edge e from a vertex in G to a vertex not in G
* Merge groups connected by an edge in the previous step

* Find a spanning tree among the edges in E’

Input Graph

Groups at Beginning of Round 1 List of Groups

Round 1 Group A

Round 1 Edge A-D

Round 1

Group B

Round 1

Edge B-A

Round 1

Group C

Round 1

Edge C-F

Round 1 Group D

Round 1 Edge D-A

Round 1 Group E

Round 1 Edge E-C

Round 1

Group F

Round 1 Edge F-C

Round 1

Group G

Round 1 Edge G-E

Round 1 Group H

Round 1 Edge H-J

Round 1

Group I

Round 1

Edge I-G

Round 1 Group J

Round 1 Edge J-H

Round 1 Ends List of Edges Added

* A-D * -G
* B-A * J-H
* C-F
* D-B
* E-C
* F-C
* G-E
* H-J

Groups at Beginning of Round 2 List of Groups

* D-A-B
* F-C-E-G-I
* H-J

Round 2

Group D-A-B

Round 2 Edge B-C

Round 2 Group F-C-E-G-I

Round 2 Edge I-J

Round 2 Group H-J

Round 2 Edge J-1

Round 2 Ends List of Edges Added

Spanning Tree Input Graph

Analysis

If G1, Gy, ..., Gy are groups of vertices in an iteration, for each G, there is a Gj, j # i,
and an edge {u,v} from a vertex u € G; to a vertex v € G;
* Else, graph is disconnected

If t groups at start of an iteration, at most t/2 groups at end of iteration
* Consider graph H with vertex set G4, G,, ..., G and r edges, where edges
correspond to the groups we connect
* Number of groups now at most number of connected components in H. Why?

After log, n iterations, one group left
e Atmostn+n/2+n/4+..+1<2nedgesinF’

E’ contains a spanning tree
* Invariant: the vertices in a group are connected

Outline

 Sketching Model
* Estimating the Euclidean norm of a vector
* Finding a non-zero coordinate of a vector

* Graph sketching
* Boruvka’s spanning tree algorithm
* Finding a spanning tree from a sketch

Representing a Graph

* For node i, let a; be a vector indexed by node pairs
* If {i,j} is an edge, a;[i,j] = 1ifj>i, and a;[i,j] = —1ifj<i

* If {i,j} is not an edge, a;[i,j] = 0

(12} {13} {14 {15} 23} 24} 25} (34 {35} {45)
a1:(1100000000)

a2:(—-1000100000)

Representing a Graph

* Lemma: for a subset S of nodes,
Support(Xiesai) = E(S, V\S)

* Proof: for edge {i,j}, if i, j € S, the sum of entries on {i,j}-th column is O

{1,23 {1.3} {14} {1.5} {23} {24} {2.5} {3.4} {3.5} {4.5}

ap= (1 1%0%0 00 0.0"0" 0%)

a;=(—1 0 0 0 1; 080 0ee)

Spanning Tree Algorithm

* Compute Oflog n) sketches C; - aj, ..., Coqog n) - @ for each g;

* Each C; - a; outputs a non-zero item of a; with probability > 4/5, else
returns FAIL

* |dea: Run Boruvka’s algorithm on sketches
* For each node j, use C; - a; to get incident edge on |

e Fori=2, ..., O(log n)

* To get incident edge on group G € V, use

Z ¢ A —Re, (Zaj) —> e € support(Zaj) =¥=(5, V\'S)

JES JjES jeSs

Spanning Tree Wrapup

* O(n log n) sketches C; - a;, asiand jvary, so O(n log3 n) space

* Note: a 1/5 fraction of sketches fail in each iteration in expectation, but on the
remaining 4/5 fraction of vertices, the number of connected components halves

* Expected number of iterations is O(log n)
* Since sketches are linear, can maintain with insertions and deletions of edges

e Overall, O(nlog? n) bits of space to output a spanning tree!

