Lecture 15: Linear
Programming |l

David Woodruff

Carnegie Mellon University



Outline

* Linear Programming Duality

* (Time permitting) More on the Ellipsoid Algorithm



P = max(2z, + 3x2)
s.t. 4xq1 4+ 8xy <12
271 + 10 < 3
3x1 + 229 < 4
r1,T9 > ()

max 2z, + 3xo

Since 2x1 + 3%, < 4x1 + 8x, < 12, we know OPT < 12
Since 2x4 + 3x, < (4X1 + 8x,) < 6, we know OPT < 6

Since 2x4 + 3x, < ((4X1 + 8x,) + (2x; + Xz)) < 5, we know OPT <5



Duality

* We took non-negative linear combinations of the constraints

* How do we find the best upper bound on OPT this way?
* Let y4,¥5,¥3 = 0 be the coefficients of our linear combination. Then,

P = max(2z, + 3x2)
s.t. 4xq1 + 8x9 <12
221+ 722 < 3
3x1+ 229 < 4
Z1:. %9 = U

4y + 2y2 + 3y 3> 2
8y1 +y2 +2y3 > 3
Y1,y2,y3 = 0

and we seek min(12y; + 3y2 + 4y3)



Primal LP Dual LP

P = max(2z, + 3z2) 4y1 +2y2 + 3y 3> 2
s.t. 4z + 8y <12 8y1 +y2 + 2y3 > 3
271+ 72 < 3 Y1,Y2,Y3 = 0
371 + 223 < 4 and we seek min(12y; + 3y2 + 4y3)
r1,T9 > 0

* If (X1,X5) is feasible for the primal, and (y4,V,, y3) feasible for the dual,
2X1 + 3X2 < 12yl + 3yZ + 4Y3

* |f these are equal, we’ve found the optimal value for both LPs

* (X,X,) = (%,Z) and (y4,V,,V3) = (136, 0, %) give the same value 4.75, so optimal



Dual LP

4y1 +2y2 + 3y 32> 2
8y1 + y2 + 2y3 > 3
Y1,Y2,y3 = 0
and we seek min(12y; + 3y2 + 4y3)

* Let’s try do the same thing to the dual:
* 12y, + 3y, + 4y3 = 4y, + 2y, + 3y, = 2
° 12y1 +3y2 +4Y3 > 8y1 +yZ +ZY3 >3

2 4
* 12y, + 3y, +4y3 = 7 (4y1 + 2y, +3y2) + (8yy +y2 + 2y3) =2 +3



P = max(2z, + 3x2)

Dual LP  4y1 +2y2 + 3y 3> 2 |
s.t. 4dxq + 8x9 <12

8y1 +y2 +2y3 > 3

21 + 12 < 3
Y1,Y2,43 = 0 321 + 224 < 4
and we seek min(12y; + 3yo + 4ys3) T1,T9 ; 0

* Take non-negative linear combination of the two constraints

* How do we find the best lower bound on OPT this way?

* Let x4, X, = 0 be the coefficients of our linear combination. Then,

*4x; +8x, <12, 2x1+x, <3, 3x;1+2x, <4, x, =20, x, =0
and we seek to maximize 2x; + 3x,

We got back the primal!



Exercise: Consider the “primal” LP below on the left:

P = max(7z; — 22 + 5z3) D = min(8y1 + 3y2 — Tys)
st. @1+ @ +4a3 <8 st 3ty 27
dx1 — 29+ 223 <3 Y1 — Yo +oy3 > -1
221 4 539 — 23 < =T p+2—1y3 25
21,12,23 2 ( 1,42, 43 2 0

Show that the problem of finding the best upper bound obtained using lincar combinations of the
constraints can be written as the LP above on the right (the “dual” LP). Also, now formulate the
problem of finding a lower bound for the dual LP. Show this lower-bounding LP is just the primal (P).



Non-Nice Constraints

P = max(7z; — z2 + bz3)
s.t. x1+x2+4x3 <8
321 — T2+ 223 2> 3

T1,%2,%3 2 ()

D = min(8y; + 3y2)
st. n+3y22>7

Y1 —y2 > —1
dy1 +2y2 2 5
Y1 2 0,92 <0



Formal Definition of Duality

Primal
Max cT'x
subjectto Ax < b
x>0
Dual
Min bTy
subject to ATy > ¢
y=0

e Dual of the dual is the primall!

* Can we get better upper/lower bounds by looking at more complicated
combinations of the inequalities, not just linear combinations?



Weak Duality

Primal Dual
Max c'x Min bly
subjectto Ax < b subject to ATy > ¢
x=0 y=0

* (Weak Duality) If x is a feasible solution of the primal, and y is a feasible
solution of the dual, then cTx < by

* Proof: Sincex > 0andy = 0,
cTx < yTAx <y™b =bTy



Strong Duality

Primal Dual
Max cTx Min bTy
subject to Ax < b subject to Aly > ¢
x =0 y =0

* (Strong Duality) If primal is feasible and bounded (i.e., optimal value is not ),
then dual is feasible and bounded. If x™ is optimal solution to the primal, and
y™ is optimal solution to dual, then

cT'x* =bly

* To prove X" |s optlmal | can give you y™* and you can check if x* is feasible for
the primal, y* is feasible for the dual, and cTx* = bTy*

*



Consequences of Duality

P\D

I
O
U

3| 3| 9 Q

U
?
?
?

| means infeasible

O means feasible and bounded

U means unbounded

Which combinations are
possible?



Consequences of Duality

P\D[I|O][U
I [V X[V
O |X|v X
U | v | X]|X

| means infeasible
O means feasible and bounded
U means unbounded

Check means possible
X means impossible



Possible Scenarios P\D[I[O]U

I v il x || v
Suppose primal is feasible and bounded

O X |l v ||| X
By strong duality, dual is feasible and bounded U v l X X
If primal (maximization) is unbounded, by weak
duality, cTx < by, so no feasible dual solution )

2

e.g., max xq subjecttox; = 1landxy; =0

Can primal and dual both be infeasible?

Primal: max 2x; — X, subjecttox; —x, < land —x; +x, < —2andx; =0,x, =0
Dual:y; =0, y, =2 0,andy; —y, = 2and —y; +y, = —1, and miny; — 2y,
Constraints are same for primal and dual, and both infeasible

X1



Strong Duality Intuition

maximize To
subject to —x1 + 222 < 3
ry +x2 < 2
—2x1+xx2< 4

r1,r2 = 0

al — (_1,2),b1 — 3
az = (1,1),b2 = 2
ag —_ (—2,1), b3 —_ 4

x" satisfies a;x = by and a,x = b,




Strong Duality Intuition

* For non-negative y; and y,
C = yi1a1 + y2a9.

c'x* = (y1a1 +y2a2) - x*
=yi(a; - x*) + yo(ag - x¥)
= Y101 + y2bo

Defining y = (y1,42,0,...,0), we get

optimal value of primal = ¢ Tx* = bTy = value of dual solution y.

the y we found satisfies ¢ = y1a; + yeas = >, yia; = ATy, and hence y satisfies the dual
constraints yl A>c! by construction. But bTy > CTX* by weak duaIity S0y is optimal'
= A '



Duality in Zero-Sum Games

* Ris an n x m row payoff matrix
* W.l.o.g. R has all non-negative entries
* Variables: v,p4, ..., Pn
* Max v
subjectto p; = 0 forallrows i, 2;;p; = 1, X;piR;; = vfor all columns ]

* Replace };;p; = 1 with )ip; < 1.
*Includev =0
* Write },; piRjj = vasv—2;piR;; <0



Duality in Zero-Sum Games

max c ' x subjectto Ax < b andx >0

v 1 0

P1 0 0 1 —RT
x=|p bc=| 0 [b=|...[and A=]|...

0 1

Dn 0 1 o1 ... 1

* Dual: min y'b subjecttoy'A > clandy > 0fory = (y4, o, Vim+1)

* Dual constraints sayy; + -+ y,, = 1 and Zj YjRij < Ym+1 forall rows i
* Since we’re minimizing y,4+1 and R;; all non-negative, y; + ...+ yy, =1

* Ym+1 IS value to the row player and yy,.., vy, is column player’s strategy

 Strong duality: max min ZipiRij = min m.aXZj YiRi;
p ] Y1,9¥Ym 1



Ellipsoid Algorithm

Solves feasibility problem

Replace objective function with constraint, do binary search
Replace “minimize x4 + x," withx; +x, < A

Can handle exponential
number of constraints if
there’s a separation oracle




Ellipsoid Algorithm in d dimensions

e Start with a big ellipsoid containing the feasible region

* Check each constraint to see if ellipsoid center is feasible
* If so, done

* Else find a violated constraint cutting the ellipsoid in half

* In poly(d) time find a new ellipsoid containing the half of the old
ellipsoid containing the feasible region



Volume Argument

* Volume of new ellipsoid at most (1-1/d)*volume of old ellipsoid

e After d iterations, what is volume of new ellipsoid?
* After d?L iterations, what is volume of new ellipsoid?

e Starting volume is 20(Ld)
e Use Cramer’s rule

 End volume is 2~0(d )

* Add a tiny amount to right hand side of each inequality A; - x < b;
* Feasible region could be a point, but after adding this, it has positive volume
* If infeasible, then because of bit complexity L, after adding this, still infeasible



Time Complexity

* poly(d) iterations, in each just walk through m constraints to find a
violated one

* Find description of new ellipsoid in poly(dL) time
* Do some linear algebra

e Overall poly(mdL) time



