15-451/651: Algorithms CMU, Spring 2015
Lecture #17: Voronoi Diagrams and Delaunay Triangulations March 23, 2015
Lecturer: Danny Sleator

1 Voronoi Diagrams

Given a set of sites (points) in the plane, s1, s2, ... s, the Voronoi diagram partitions the plane into
regions where the region associated with s; is the set of points in the plane that are closer to site s;
than any other. Let R; denote the region associated with s;. The diagram above shows a Voronoi
diagram with twelve sites.

The Voronoi regions are convex polygons. To see this note that R; is the intersection of n — 1 half-
planes, one for each other site j. It’s the half space of the plane (bounded by the perpendicular
bisector between s; and s;) of the points closer to s; than to s;. So the Voronoi regions are (possibly
infinite) convex polygons. Because the Voronoi diagram is a planar graph, the number of vertices
and edges in it is linear in n (by virtue of Euler’s formula).

We will talk about Voronoi regions (mentioned above), Voronoi edges (boundaries between Voronoi
regions) and Voronoi vertices (where edges meet other edges).

When we say that two Voronoi regions have a “boundary in common” or “share a boundary” we
mean a boundary of non-zero length. So, for example, if there are four sites that are at the corners
of a square, then the vertex of the Voronoi diagram has degree four. We don’t consider diagonally
opposite regions to have a boundary in common.

Unless otherwise specified, in these notes we’re going to assume that the Voronoi diagram has only
vertices of degree three. (This will happen if no four of the sites are co-circular.)

2 Delaunay Triangulations

A triangulation of a set of sites is a way of partitioning the convex hull of the set of sites into
triangles, where the vertices of the triangles consist of sites.

The Delaunay triangulation of a set of sites is a specific triangulation that is the “dual” of the
Voronoi diagram. Two sites s; and s; are connected by an edge in the Delaunay triangulation if and
only if R; and R; share a boundary in the Voronoi diagram. The following diagram superimposes
the Delaunay triangulation on the Voronoi diagram above.

The Delaunay triangulation has a number of nice properties. Here are some of them.

* The closest pair is an edge of the Delaunay triangulation. (The following figure, in con-
junction with the lemma below proves this.)

* The minimum spanning tree of the sites (using the Euclidean distance as the length of an
edge) is a subset of the edges of the Delaunay triangulation.

* The “smallest angle” in a triangulation is the minimum angle among all of the triangles in
it. The Delaunay triangulation, among all triangulations, has the maximum smallest angle.

* You can use the Delaunay triangulation to compute the Voronoi diagram.

2

Lemma: The edges of the convex hull of the sites are edges in the Delaunay triangulation.

Proof: If two sites are neighbors on the convex hull, then if we follow the perpendicular bisector
between the points sufficiently far away, eventually we must reach a point which is closest to the
two neighbors than any other site. This shows that the two Voronoi regions have this boundary
incommon. QED.

Lemma: (s;, s;) is in the Delaunay triangulation iff there exists a circle through s; and s; containing
no other site inside of it.

Proof: =: (s;,5;) being in the Delaunay triangulation means that R; and R; have a boundary in
common. Take a circle centered on a point on that boundary. This circle cannot contain another
site inside of it (this would violate the fact that this point is closer to s; and s; than any other
site.)

«: There exists a circle through s; and s; containing no other site. Let p be the center of this
circle. Point p must be on the boundary between R; and R;. If p is not a vertex of the Voronoi
diagram then it must be along an edge of the diagram, and we’re done. If it is a vertex, then one
of the three lines eminating from that vertex is the boundary between R; and R;. QED.

Lemma: Assuming no four sites are co-circular, then the Deleunay triangulation is unique.

Proof: Every vertex of the Voronoi diagram has degree 3. These correspond to the triangles of
the Delaunay triangulation. QED.

Note: Furthermore if there exists four or more co-circular sites, the Delaunay triangulation is not
unique. It is unique if you allow the Delaunay “triangulation”” to have non-triangulated polygons
(all of whose vertices are co-circular.)

Claim: Given a Delaunay triangulation for a set of sites we can compute the Voronoi diagram in
O(n) time. And conversely.

3 Computing the Delaunay Triangulation

3D-Convex Hull Method: Take each site s; = (z;,y;) and replace it by a point in three dimen-

sions (z;,y;, 27 + y2). This is a point on a parabaloid of revolution.

Now take the convex hull of this set of points in 3D. The triangles of this convex hull (visible from

the z,y plane), when projected back down to the plane, form the the Delaunay triangulation. No

Proof. Note that the 3D convex hull can be computed in O(nlogn) time. The following figure

illustrates this process.

Today I will present a simple algorithm for computing the Delaunay triangulation in O(n?
Again we assume that no three sites are co-circular.

-

?
’.‘%

.
¢

Project onto paraboloid. Compute convex hull. Praject hull faces back to plane.

) time.
(Although this assumption can easily be

removed if we allow the algorithm to output co-circular polygons, instead of only triangles.)

Simple Delaunay Algorithm:

(1) Find an edge that must be in the Delaunay triangulation. (The closest pair has his

property, as well as any edge of the convex hull of the sites.)

We’re going to maintain a queue of directed Delaunay edges that need to have the triangle
to “their right” be explored. Put the starting edge just found (both directions of it) into
this queue to start with, and also add them to the Delaunay triangulation we’re building.

Process the queue in the following way until the queue is empty.

Let (i,j) be an edge in the queue. Consider all the other sites k such that sj is to the
right of ray s; — s;. If there is no such k, then (4, j) is a convex hull edge. Delete it from
the queue.

Otherwise, find the sy to the right of s; — s; so that the circle (s;, 54, s3,) does not contain
any other sites. We do this by simply trying them all, and keeping the best one found so
far. If a new one is inside the circle of the best previously found one, this one becomes
our new best. (This requires the incircle test described in an earlier lecture.)

Now, having found our best site s, we add edges (i, k), (k,j) to the queue, and to the
Delaunay triangulation we’re building. We also remove (i, j), (j, k), and (k,7) from the
queue.

A couple of comments:

* Each edge generated is a Delaunay edge. The first one (the closest pair) clearly is — just
draw the circle with this edge as its diameter. It must contain no other sites.

Every additional edge that we add comes with an associated empty circle that certifices it
as a Deleunay edge.

* The circle through the points (s;,s;,s;) found in the search above must be an empty
circle. We know this because we have inductively certified that (s;, s;) is a Delaunay edge.
Specifically the following situation cannot arise:

Ss

S¢

There cannot be a site (such as s; shown above) on the left side of the ray s; — s;, and
inside the circle. The existance of such a site proves that there is NO empty circle through
sites s; and s;. And we know that is impossible by virtue of our proof that (s;,s;) is a
Delaunay edge.

* When the algorithm stops, the entire triangulation has been generated. This follows from
the fact that the triangulation is connected.

* The running time is O(n?) because for each Delaunay edge generated we may have to do a
scan of all the other sites.

4 An Additional Links

A lecture by Ken Clarkson:
http://cm.bell-labs.com/who/clarkson/cis677/lecture/5/

This applet lets you insert, delete, and move sites around while viewing the Delaunay triangulation
and/or the Voronoi diagram:
http://www.personal .kent.edu/~rmuhamma/Compgeometry/MyCG/Voronoi/Incremental2/incremental2.htm

Here’s my Ocaml implementation of the O(n?) algorithm described above:
http://codeforces.com/contest/275/submission/3201063

	Voronoi Diagrams
	Delaunay Triangulations
	Computing the Delaunay Triangulation
	An Additional Links

