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The closed half-space H(a, b) containing a and with boundary the bisector hyperplane is the
locus of all points such that

(b1 − a1)x1 + · · · + (bm − am)xm ≤ (b2
1 + · · · + b2

m)/2 − (a2
1 + · · · + a2

m)/2,

and the closed half-space H(b, a) containing b and with boundary the bisector hyperplane is
the locus of all points such that

(b1 − a1)x1 + · · · + (bm − am)xm ≥ (b2
1 + · · · + b2

m)/2 − (a2
1 + · · · + a2

m)/2.

The closed half-space H(a, b) is the set of all points whose distance to a is less than or equal
to the distance to b, and vice versa for H(b, a).

Figure 8.2 shows the Voronoi diagram of a set of twelve points.

Figure 8.2: A Voronoi diagram

In the general case where E has dimension m, the definition of the Voronoi diagram
Vor(P ) of P is the same as Definition 8.1, except that H(pi, pj) is the closed half-space
containing pi and having the bisector hyperplane of a and b as boundary. Also, observe that
the convex hull of P is a convex polytope.

We will now state a lemma listing the main properties of Voronoi diagrams. It turns out
that certain degenerate situations can be avoided if we assume that if P is a set of points in
an affine space of dimension m, then no m + 2 points from P belong to the same (m − 1)-
sphere. We will say that the points of P are in general position. Thus when m = 2, no 3.5
points in P are cocyclic, and when m = 3, no 5 points in P are on the same sphere.

1 Voronoi Diagrams

Given a set of sites (points) in the plane, s1, s2, . . . sn the Voronoi diagram partitions the plane into
regions where the region associated with si is the set of points in the plane that are closer to site si
than any other. Let Ri denote the region associated with si. The diagram above shows a Voronoi
diagram with twelve sites.

The Voronoi regions are convex polygons. To see this note that Ri is the intersection of n− 1 half-
planes, one for each other site j. It’s the half space of the plane (bounded by the perpendicular
bisector between si and sj) of the points closer to si than to sj . So the Voronoi regions are (possibly
infinite) convex polygons. Because the Voronoi diagram is a planar graph, the number of vertices
and edges in it is linear in n (by virtue of Euler’s formula).

We will talk about Voronoi regions (mentioned above), Voronoi edges (boundaries between Voronoi
regions) and Voronoi vertices (where edges meet other edges).

When we say that two Voronoi regions have a “boundary in common” or “share a boundary” we
mean a boundary of non-zero length. So, for example, if there are four sites that are at the corners
of a square, then the vertex of the Voronoi diagram has degree four. We don’t consider diagonally
opposite regions to have a boundary in common.

Unless otherwise specified, in these notes we’re going to assume that the Voronoi diagram has only
vertices of degree three. (This will happen if no four of the sites are co-circular.)
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2 Delaunay Triangulations

A triangulation of a set of sites is a way of partitioning the convex hull of the set of sites into
triangles, where the vertices of the triangles consist of sites.

The Delaunay triangulation of a set of sites is a specific triangulation that is the “dual” of the
Voronoi diagram. Two sites si and sj are connected by an edge in the Delaunay triangulation if and
only if Ri and Rj share a boundary in the Voronoi diagram. The following diagram superimposes
the Delaunay triangulation on the Voronoi diagram above.
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Figure 8.4: Delaunay triangulation associated with a Voronoi diagram

The most direct method to obtain fast algorithms is to use the “lifting method” discussed
in Section 8.4, whereby the original set of points is lifted onto a paraboloid, and to use fast
algorithms for finding a convex hull.

A very interesting (undirected) graph can be obtained from the Voronoi diagram as
follows: The vertices of this graph are the points pi (each corresponding to a unique region
of Vor(P )), and there is an edge between pi and pj iff the regions Vi and Vj share an edge.
The resulting graph is called a Delaunay triangulation of the convex hull of P , after Delaunay,
who invented this concept in 1933.5. Such triangulations have remarkable properties.

Figure 8.4 shows the Delaunay triangulation associated with the earlier Voronoi diagram
of a set of twelve points.

One has to be careful to make sure that all the Voronoi vertices have been computed
before computing a Delaunay triangulation, since otherwise, some edges could be missed. In
Figure 8.5 illustrating such a situation, if the lowest Voronoi vertex had not been computed
(not shown on the diagram!), the lowest edge of the Delaunay triangulation would be missing.

The concept of a triangulation can be generalized to dimension 3, or even to any dimension
m.

The Delaunay triangulation has a number of nice properties. Here are some of them.

* The closest pair is an edge of the Delaunay triangulation. (The following figure, in con-
junction with the lemma below proves this.)Proof (closest pair property)

si sj

empty

empty
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* The minimum spanning tree of the sites (using the Euclidean distance as the length of an
edge) is a subset of the edges of the Delaunay triangulation.

* The “smallest angle” in a triangulation is the minimum angle among all of the triangles in
it. The Delaunay triangulation, among all triangulations, has the maximum smallest angle.

* You can use the Delaunay triangulation to compute the Voronoi diagram.
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Lemma: The edges of the convex hull of the sites are edges in the Delaunay triangulation.

Proof: If two sites are neighbors on the convex hull, then if we follow the perpendicular bisector
between the points sufficiently far away, eventually we must reach a point which is closest to the
two neighbors than any other site. This shows that the two Voronoi regions have this boundary
incommon. QED.

Lemma: (si, sj) is in the Delaunay triangulation iff there exists a circle through si and sj containing
no other site inside of it.

Proof (Empty circle property)

DT (S)

si

sj
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Proof: ⇒: (si, sj) being in the Delaunay triangulation means that Ri and Rj have a boundary in
common. Take a circle centered on a point on that boundary. This circle cannot contain another
site inside of it (this would violate the fact that this point is closer to si and sj than any other
site.)

⇐: There exists a circle through si and sj containing no other site. Let p be the center of this
circle. Point p must be on the boundary between Ri and Rj . If p is not a vertex of the Voronoi
diagram then it must be along an edge of the diagram, and we’re done. If it is a vertex, then one
of the three lines eminating from that vertex is the boundary between Ri and Rj . QED.

Lemma: Assuming no four sites are co-circular, then the Deleunay triangulation is unique.

Proof: Every vertex of the Voronoi diagram has degree 3. These correspond to the triangles of
the Delaunay triangulation. QED.

Note: Furthermore if there exists four or more co-circular sites, the Delaunay triangulation is not
unique. It is unique if you allow the Delaunay “triangulation”” to have non-triangulated polygons
(all of whose vertices are co-circular.)

Claim: Given a Delaunay triangulation for a set of sites we can compute the Voronoi diagram in
O(n) time. And conversely.
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3 Computing the Delaunay Triangulation

3D-Convex Hull Method: Take each site si = (xi, yi) and replace it by a point in three dimen-
sions (xi, yi, x

2
i + y2i ). This is a point on a parabaloid of revolution.

Now take the convex hull of this set of points in 3D. The triangles of this convex hull (visible from
the x, y plane), when projected back down to the plane, form the the Delaunay triangulation. No
Proof. Note that the 3D convex hull can be computed in O(n log n) time. The following figure
illustrates this process.

Voronoi diagram: A different Formulation

1. Project each point pi on the surface of a unit paraboloid

2. Compute the lower convex hull of the projected points. 

Result: Given S = {pi|i=1, 2,  n} in the plane (no 4 points co-circular) and given 
3 points p, q, r S, the triangle pqr is a triangle of Delauney triangulation if 
p’q’r’ is a face of the lower convex hull of the projected points S’ 

Conclusion:  The projection of this convex hull gives the Delauney Triangulation          
of the point set.

Today I will present a simple algorithm for computing the Delaunay triangulation in O(n2) time.
Again we assume that no three sites are co-circular. (Although this assumption can easily be
removed if we allow the algorithm to output co-circular polygons, instead of only triangles.)

Simple Delaunay Algorithm:

(1) Find an edge that must be in the Delaunay triangulation. (The closest pair has his
property, as well as any edge of the convex hull of the sites.)

We’re going to maintain a queue of directed Delaunay edges that need to have the triangle
to “their right” be explored. Put the starting edge just found (both directions of it) into
this queue to start with, and also add them to the Delaunay triangulation we’re building.

(2) Process the queue in the following way until the queue is empty.

Let (i, j) be an edge in the queue. Consider all the other sites k such that sk is to the
right of ray si → sj . If there is no such k, then (i, j) is a convex hull edge. Delete it from
the queue.

Otherwise, find the sk to the right of si → sj so that the circle (si, sj , sk) does not contain
any other sites. We do this by simply trying them all, and keeping the best one found so
far. If a new one is inside the circle of the best previously found one, this one becomes
our new best. (This requires the incircle test described in an earlier lecture.)

Now, having found our best site sk, we add edges (i, k), (k, j) to the queue, and to the
Delaunay triangulation we’re building. We also remove (i, j), (j, k), and (k, i) from the
queue.
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A couple of comments:

* Each edge generated is a Delaunay edge. The first one (the closest pair) clearly is – just
draw the circle with this edge as its diameter. It must contain no other sites.

Every additional edge that we add comes with an associated empty circle that certifices it
as a Deleunay edge.

* The circle through the points (si, sj , sk) found in the search above must be an empty
circle. We know this because we have inductively certified that (si, sj) is a Delaunay edge.
Specifically the following situation cannot arise:

!
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There cannot be a site (such as sl shown above) on the left side of the ray si → sj , and
inside the circle. The existance of such a site proves that there is NO empty circle through
sites si and sj . And we know that is impossible by virtue of our proof that (si, sj) is a
Delaunay edge.

* When the algorithm stops, the entire triangulation has been generated. This follows from
the fact that the triangulation is connected.

* The running time is O(n2) because for each Delaunay edge generated we may have to do a
scan of all the other sites.

4 An Additional Links

A lecture by Ken Clarkson:
http://cm.bell-labs.com/who/clarkson/cis677/lecture/5/

This applet lets you insert, delete, and move sites around while viewing the Delaunay triangulation
and/or the Voronoi diagram:
http://www.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/Voronoi/Incremental2/incremental2.htm

Here’s my Ocaml implementation of the O(n2) algorithm described above:
http://codeforces.com/contest/275/submission/3201063
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