Algorithm
Design and Analysis

The Fast Fourier Transform

Goals for today

* Review some math, i.e., polynomials and complex numbers

* Derive the Fast Fourier Transform algorithm, and use it to produce a
fast algorithm for polynomial multiplication

 (Optional) time permitting, FFT over finite fields

Definition: A polynomial of degree d is a function p of the form:
d

p(x) = z cixt =cgx®+cg_ x4+ x + ¢
i=0

* Uniquely described by its coefficients (¢4, c4_1, ..., C1, Cp)

e Uniquely described by its value at d + 1 distinct points (the unique
reconstruction theorem)

Given polynomials A(x) and B(x),

A(x) = ag + a;x + a,x? + -+ agx®

B(x) = by + byx + byx? + - + byx®

Their product is
C(x) =co+ cix + cyx? + -+ cpgx?°

Cp = z a;b; —Zabkl

I+j=k

where

Definition: The field of consists of numbers of the
form

a + bi

¢ {2 = —1 by definition

» Useful because every polynomial equation has a solution over the
complex numbers. Not true over reals.

<"+ = 0O

Definition: An isan n™™ rootof 1, i.e.,
w" =
* There are exactly n complex nt! roots of unity, given by
2Tk
e n k=01,...n—1

e Can also write

: k
627;51116 _ ()

27T1

e The number e n is called a

2Tk 27T K

e n =\en

h

* Definition: Formally, w is a primitive n'" root of unity if

w" =
wk 1 for 0<k<n

Roots of unity

o’

2™ roots of unity 4™ roots of unity 8t roots of unity

* Directly using the definition of the product of two polynomials would
give us an 0(d?) algorithm

» Karatsuba can bring this down to 0(d!%)

 What if we used a different representation?

A: zi(xo) A(x1), A(x2), - A(xd), es A(X2g)

B: B(xo), B(x1) B(xz) L B(xg), ., B(x20)

—
—

C: C(x0), C(x1),C(x2),...,C(xq) , ..., C(X24)

Fast polynomial multiplication

¢
1. Pick N = 2d + 1 points xq, X1, ..., Xn—1 [? ¢

2. Evaluate A(x,),A(xq), ..., A(xy_1) and B(xy), B(x1), ..., B(xy_1)
3. Compute C(xp) = A (ace) > B(Dch) O (N)

4. Interpolate C(xg), ..., C(xy—_1) to get the coefficients of C .,
?

How do we do steps 2 and 4 efficiently???

10

* Consider the polynomial A of degree 7
A(x) = ag + a;x + ayx? + asx3 + a,x* + asx® + agx® + arx’
* Suppose we want to evaluate A(1) and A(—1)
A(l)=ap+a;+a,+az3+a,+as+ag+ a,
A(—1)=ay—a,+a,—az;+a,—as +ag —a-

Z= do+02+ Ay tag A() = Z+w
W= Q& +tA+ + As A5 A1) = 7 - W

* Consider the polynomial A of degree 7

A(x) = ag + a;x + ayx? + asx3 + a,x* + asx® + agx® + arx’
* What if we split in half (like last slide) but keep it as a polynomial?

3
3

Z=ay+a,+a,+ag Aoven(X) = ag + ayx + asx? + agx
W=a;+as;+as+a, Aoga(x) = a; + azx + asx? + a,x

A() = Aasn () + 3¢ Aoan (%)

A(x) = Aeven(xz) T X Aodd(xz)

* This formula gives us a key ingredient for
* We want to evaluate an N-term polynomial at N points
* Break into two N /2-term polynomials and evaluate at N/2 points
 Combine the two halves using the formula above

KD, K(2) AR, A A, AG)
: v/
t A (A9 All6
ALY AY) A9) A\

What points should we use for x?

e But what to do about the x?2

 We want to evaluate N points and recurse on a problem that evaluates
N /2 points... such that the squares of the N points are the N /2 points...

14

Roots of unity to the rescue!!!

B roots of unity over the complex field are

wk fork=01,..,n—1

h

e Recall the nt

27T

where w = e n is our “primitive” n'" root of unity

15

* Assume N is a power of two (pad with zero coefficients)

-
* In other words, set w = exp (%l) then set x;, = w* f\

* To evaluate A(x) at ", w?, w?, ..., "™ %ﬂ

* Break into Agyen(x) and A qq(x)

2

e Evaluate those at w°, w?, w?, ...

* Combine using A(a)k) = Aeven(wZR) + (Uk Aodd(wZR)

FFT([ao, al, ...,aN_l], w, N) —_ {
if V = 1 then return [|

E « FFT([Ro,Qq, . ,aN’Z]J wz_, N/Z)

0 «FFT([2as - av-1], W7, N/Z,)

x <1
fork =0toN —1do{

Ak« E[k m¥%]+ o O[kmi]

X <X Xw

} return A

Back to multiplication

1. Pick N = 2d + 1 points xg, X1, ..., Xy_1 (Pick N'! roots of unity)
2. Evaluate A(xyp), ..., A(xy_1) and B(xyp), ..., B(xy_1) (Using FFT)
3. Compute C(x;) = A(x;) B(xy,)

4. Interpolate C(xg), ..., C(xy—_1) to get the coefficients of C

One step to go...

18

e Given C(w?), C(w?!), ...,C(w"N 1) where N = 2d + 1
* We want to get the N coefficients of C(x) back
* To get some intuition, lets look at the forward algorithm

N N
Alk] « E [k modgl + w® -0 [k modgl

* Notice that each term of E and O contributes exactly twice because
of the mod

/A
Alk] <« E [k modg] + wk-0 [k modg] j@ B

* Notice that each term of E and O contributes exactly twice because

of the mod |
i = Z(AU Akw/z)
Ak — Ek + a)k . 0k

L, =k
Ag+ny2 = Ex — w* - 0y Ok: 2w (Ak‘Alu-N/z)

e What if we rewrite this in matrix form?

The Magic is Iin the Root

A 1wk E
()= () (@) e

B\ 1/ 1 1 A, ,
(00) =2 (omr apt) () st

The magic is in the inverse root of unity w™" (and matrices)

21

e Given C(w?), C(w?!), ...,C(w"N 1) where N = 2d + 1
* We want to get the N coefficients of C(x) back

Evaluating a polynomial at a point can be represented as
a vector-vector product:

Qo \
Q.

O\N-J/

((XOX| Xw-l>

[l

A ()

: Evaluating a polynomial at many points can be represented
as a matrix-vector product

- 2 N—1-) i
1 xg X5 - X - ag - A(xp)
1 x xé .. xVH a4 A(xy)
1 x, X3 .. b2l | I
2 N-1|Ldy—1d A(x
L1 xy_q Xpy-1 - Xn_1- A(xXy-1)-

This matrix is invertible iff the x; are distinct

Inverse FFT continued

* In our case, x;, = w”™ where w is a principle N™ root of unity, so

1 1 1
1 w w?>
1 2 4

FFT(w,N) = @ @

1 oN-1 2(0v-1)

: . J
* Element in row k, column j, |s(wk) = W

kj

1

wN—l

w20-1)

wWN-1D? |

24

Consider FFT with the inverse root of unity, i.e.
FFT(w™1,N)

What is the product of FFT (w, N) X FFT(w™!, N)? The (k, j) entry is
N~
(AB)k s Z ka‘bs‘
J S=o J

Inverse FFT continued [

* Entry (k,j) of FFT(w,N) X FFT(w™1,N) is:

N-1
2 w—kstJ Z
s=0

* What does the diagonal of the product look like? (k = j)

N) . : -)
2wt - Z 1 = N
S=o S=o

26

-

* Entry (k,j) of FFT(w,N) X FFT(w™1,N) is:
N

_ _ :w IS a primitive root of unity
2 w S @S oV =1
- w¥+1for0<k<N
* What do the non- dlagonal entries of the product look like? (k # j)
-_3 N
Zw(.\i)s - Z (Wb L))] = (w™)
S=0 /r | - ws-k
GEOMETPIC SERIES)
N O
- (w")
- ~ - = 2727 (hD”Z@VD)

* So, we've just showed that

FFT(w,N) X FFT(w™,N) =

* Therefore

FFT 1(w,N) =

1
N

N 0 O 1
0O - 0|=N]|0
O 0 N 0
FFT(w", N)

-

-2 <4

Back to multiplication

1. Pick N = 2d + 1 points x¢, x4, ..., Xy_1 (Pick N roots of unity)
2. Evaluate A(xyp), ..., A(xy_1) and B(xyp), ..., B(xy_1) (Using FFT)
3. Compute C(x;) = A(x;) B(xy)

4. Interpolate C(xg), ..., C(xy_1) to get the coefficients of C (Inverse FFT)

Runtime: () (N 103 N) 0

29

* We defined FFT in terms of roots of unity over complex numbers

* Did we really to use complex numbers?

« We needed N N roots of unity to do divide-and-conquer
e Other fields have roots of unity too!
* E.g., integers mod p for a prime p

* Need to pick a sufficiently large prime p.
* Not all primes work for any N. A good choiceis (cN + 1).
* The field must have N N™ roots of unity (guaranteed ifp =cN + 1).

* Must find a primitive N root of unity (doable with number theory)

* FFT is super cool

* The first key idea was to divide a polynomial into odd and even terms
and use

* To make the points line up in the recursive case, we had to evaluate
the polynomials at

	Slide 1: Algorithm Design and Analysis
	Slide 2: Goals for today
	Slide 3: Quick review: polynomials
	Slide 4: Quick review: polynomials
	Slide 5: Review: complex numbers
	Slide 6: Roots of unity
	Slide 7: Roots of unity
	Slide 8: Roots of unity
	Slide 9: Back to polynomial multiplication
	Slide 10: Fast polynomial multiplication
	Slide 11: To Point-Value Form
	Slide 12: How to make it recursive?
	Slide 13: A divide-and-conquer idea
	Slide 14: What points should we use for bold italic x?
	Slide 15: Roots of unity to the rescue!!!
	Slide 16: The Fast Fourier Transform
	Slide 17
	Slide 18: Back to multiplication
	Slide 19: Inverse FFT
	Slide 20: The Inverse Intuition
	Slide 21: The Magic is in the Root
	Slide 22: Back to the Inverse FFT
	Slide 23: Inverse FFT continued
	Slide 24: Inverse FFT continued
	Slide 25: Inverse FFT continued
	Slide 26: Inverse FFT continued
	Slide 27: Inverse FFT continued
	Slide 28: Inverse FFT continued
	Slide 29: Back to multiplication
	Slide 30: FFT over finite fields (optional)
	Slide 31: FFT over finite fields (optional)
	Slide 32: Take-home messages

