
Algorithm
Design and Analysis

The Fast Fourier Transform
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Goals for today

• Review some math, i.e., polynomials and complex numbers

• Derive the Fast Fourier Transform algorithm, and use it to produce a 
fast algorithm for polynomial multiplication

• (Optional) time permitting, FFT over finite fields
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Quick review: polynomials

• Uniquely described by its coefficients 𝑐𝑑 , 𝑐𝑑−1, … , 𝑐1, 𝑐0

• Uniquely described by its value at 𝑑 + 1 distinct points (the unique 
reconstruction theorem)
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Definition: A polynomial of degree d is a function 𝑝 of the form:

𝑝 𝑥 ≔ ෍

𝑖=0

𝑑

𝑐𝑖 𝑥𝑖 = 𝑐𝑑𝑥𝑑 + 𝑐𝑑−1𝑥𝑑−1 + ⋯ + 𝑐1𝑥 + 𝑐0



Quick review: polynomials

Given polynomials 𝐴(𝑥) and 𝐵(𝑥), 

𝐴 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑑𝑥𝑑

𝐵 𝑥 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + ⋯ + 𝑏𝑑𝑥𝑑

Their product is
𝐶 𝑥 = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + ⋯ 𝑐2𝑑𝑥2𝑑

where 

𝑐𝑘 = ෍

𝑖+𝑗=𝑘

𝑎𝑖𝑏𝑗 = ෍

𝑖=0

𝑘

𝑎𝑖𝑏𝑘−𝑖
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Review: complex numbers

• 𝑖2 = −1 by definition

• Useful because every polynomial equation has a solution over the 
complex numbers. Not true over reals.
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Definition: The field of complex numbers consists of numbers of the 
form

𝑎 + 𝑏𝑖



Roots of unity

• Can also write

𝑒
2𝜋𝑖𝑘

𝑛 = 𝒆
𝟐𝝅𝒊

𝒏

𝑘
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• There are exactly 𝑛 complex 𝑛th roots of unity, given by

𝑒
2𝜋𝑖𝑘

𝑛 , 𝑘 = 0,1, … , 𝑛 − 1

Definition: An 𝒏𝐭𝐡 root of unity is an 𝑛th root of 1, i.e.,

𝜔𝑛 = 1



Roots of unity

• The number 𝑒
2𝜋𝑖

𝑛  is called a primitive 𝒏𝐭𝐡 root of unity

𝑒
2𝜋𝑖𝑘

𝑛 = 𝑒
2𝜋𝑖

𝑛

𝑘
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• Definition: Formally, 𝜔 is a primitive 𝑛th root of unity if

ቊ
𝜔𝑛 = 1 
𝜔𝑘 ≠ 1 for 0 < 𝑘 < 𝑛



Roots of unity
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𝟐𝐧𝐝 roots of unity 𝟒𝐭𝐡 roots of unity 𝟖𝐭𝐡 roots of unity



Back to polynomial multiplication
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• Directly using the definition of the product of two polynomials would 
give us an 𝑂(𝑑2) algorithm

• Karatsuba can bring this down to 𝑂(𝑑1.58)

• What if we used a different representation?

A: 𝑨 𝒙𝟎 , 𝑨 𝒙𝟏 , 𝑨 𝒙𝟐 , … , 𝑨 𝒙𝒅

B: 𝑩 𝒙𝟎 , 𝑩 𝒙𝟏 , 𝑩 𝒙𝟐 , … , 𝑩 𝒙𝒅

C: 𝑪 𝒙𝟎 , 𝑪 𝒙𝟏 , 𝑪 𝒙𝟐 , … , 𝑪 𝒙𝒅  

, … , 𝑨 𝒙𝟐𝒅

, … , 𝑩 𝒙𝟐𝒅

, … , 𝑪 𝒙𝟐𝒅



Fast polynomial multiplication

1. Pick 𝑁 = 2𝑑 + 1 points 𝑥0, 𝑥1, … , 𝑥𝑁−1

2. Evaluate 𝐴 𝑥0 , 𝐴 𝑥1 , … , 𝐴(𝑥𝑁−1) and 𝐵 𝑥0 , 𝐵 𝑥1 , … , 𝐵(𝑥𝑁−1)

3. Compute 𝐶 𝑥𝑘 =

4. Interpolate 𝐶 𝑥0 , … , 𝐶(𝑥𝑁−1) to get the coefficients of 𝐶
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How do we do steps 2 and 4 efficiently???



To Point-Value Form

• Consider the polynomial 𝐴 of degree 7

𝐴 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + 𝑎6𝑥6 + 𝑎7𝑥7

• Suppose we want to evaluate 𝐴(1) and 𝐴(−1)

 𝐴 1 = 𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 + 𝑎7

𝐴 −1 = 𝑎0 − 𝑎1 + 𝑎2 − 𝑎3 + 𝑎4 − 𝑎5 + 𝑎6 − 𝑎7
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How to make it recursive?

• Consider the polynomial 𝐴 of degree 7

𝐴 𝑥 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 + 𝑎5𝑥5 + 𝑎6𝑥6 + 𝑎7𝑥7

• What if we split in half (like last slide) but keep it as a polynomial?
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𝐴even 𝑥 = 𝑎0 + 𝑎2𝑥 + 𝑎4𝑥2 + 𝑎6𝑥3

 𝐴odd 𝑥 = 𝑎1 + 𝑎3𝑥 + 𝑎5𝑥2 + 𝑎7𝑥3
𝑍 = 𝑎0 + 𝑎2 + 𝑎4 + 𝑎6

𝑊 = 𝑎1 + 𝑎3 + 𝑎5 + 𝑎7

𝐴 𝑥 =



A divide-and-conquer idea

𝐴 𝑥 = 𝐴even 𝑥2 + 𝑥 𝐴odd(𝑥2)
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• This formula gives us a key ingredient for divide-and-conquer
• We want to evaluate an 𝑁-term polynomial at 𝑁 points

• Break into two 𝑁/2-term polynomials and evaluate at 𝑁/2 points

• Combine the two halves using the formula above



What points should we use for 𝒙?
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• But what to do about the 𝑥2

• We want to evaluate 𝑁 points and recurse on a problem that evaluates 
𝑁/2 points… such that the squares of the 𝑁 points are the 𝑁/2 points…



Roots of unity to the rescue!!!

• Recall the 𝑛th roots of unity over the complex field are

𝜔𝑘  for 𝑘 = 0,1, … , 𝑛 − 1

   where 𝜔 = 𝑒
2𝜋𝑖

𝑛  is our “primitive” 𝑛th root of unity
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The Fast Fourier Transform

• Assume 𝑁 is a power of two (pad with zero coefficients)

• Choose 𝒙𝟎, 𝒙𝟏, … , 𝒙𝑵−𝟏 to be 𝑵𝐭𝐡 roots of unity

• In other words, set 𝜔 = exp
2𝜋𝑖

𝑁
 then set 𝑥𝑘 = 𝜔𝑘

• To evaluate 𝐴(𝑥) at 𝜔0, 𝜔1, 𝜔2, … , 𝜔𝑁
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• Break into 𝐴even(𝑥) and 𝐴odd(𝑥)

• Evaluate those at 𝜔0, 𝜔2, 𝜔4, …

• Combine using 𝐴 𝜔𝑘 = 𝐴even 𝜔2𝑘 + 𝜔𝑘 𝐴odd(𝜔2𝑘)

The 𝑵/𝟐 𝒕𝒉 roots of unity!!!



FFT( 𝑎0, 𝑎1, … , 𝑎𝑁−1 , 𝜔, 𝑁) = {    // Returns F = [𝑨(𝝎𝟎), 𝑨(𝝎𝟏), … , 𝑨(𝝎𝑵−𝟏)]

    if 𝑁 = 1 then return 

    𝐸 ← FFT(

    𝑂 ← FFT(

    𝑥 ← 1    // 𝒙 stores 𝝎𝒌

    for 𝑘 = 0 to 𝑁 − 1 do {  // Compute 𝑨 𝝎𝒌 = 𝑨𝐞𝐯𝐞𝐧 𝝎𝟐𝒌 + 𝝎𝒌 𝑨𝐨𝐝𝐝(𝝎𝟐𝒌)

        𝐴 𝑘 ←

        𝑥 ← 𝑥 × 𝜔  // In practice, beware rounding errors…

    }  return 𝐴 

} 
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Back to multiplication
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1. Pick 𝑵 = 𝟐𝒅 + 𝟏 points 𝒙𝟎, 𝒙𝟏, … , 𝒙𝑵−𝟏 (Pick 𝑵𝐭𝐡 roots of unity)

2. Evaluate 𝑨 𝒙𝟎 , … , 𝑨(𝒙𝑵−𝟏) and 𝑩 𝒙𝟎 , … , 𝑩(𝒙𝑵−𝟏) (Using FFT)

3. Compute 𝑪 𝒙𝒌 = 𝑨 𝒙𝒌  𝑩(𝒙𝒌) 

4. Interpolate 𝐶 𝑥0 , … , 𝐶(𝑥𝑁−1) to get the coefficients of 𝐶

One step to go…



Inverse FFT

• Given 𝐶 𝜔0 , 𝐶 𝜔1 , … , 𝐶(𝜔𝑁−1) where 𝑁 = 2𝑑 + 1

• We want to get the 𝑁 coefficients of 𝐶(𝑥) back

• To get some intuition, lets look at the forward algorithm
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𝐴 𝑘 ← 𝐸 𝑘 mod
𝑁

2
+ 𝜔𝑘 ⋅ 𝑂 𝑘 mod

𝑁

2

• Notice that each term of 𝐸 and 𝑂 contributes exactly twice because 
of the mod



The Inverse Intuition
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𝐴 𝑘 ← 𝐸 𝑘 mod
𝑁

2
+ 𝜔𝑘 ⋅ 𝑂 𝑘 mod

𝑁

2

• Notice that each term of 𝐸 and 𝑂 contributes exactly twice because 
of the mod

𝐴𝑘 = 𝐸𝑘 + 𝜔𝑘 ⋅ 𝑂𝑘

𝐴𝑘+𝑁/2 = 𝐸𝑘 − 𝜔𝑘 ⋅ 𝑂𝑘

• What if we rewrite this in matrix form?



The Magic is in the Root
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The magic is in the inverse root of unity 𝜔−𝑘 (and matrices)



Back to the Inverse FFT

• Given 𝐶 𝜔0 , 𝐶 𝜔1 , … , 𝐶(𝜔𝑁−1) where 𝑁 = 2𝑑 + 1

• We want to get the 𝑁 coefficients of 𝐶(𝑥) back
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Observation: Evaluating a polynomial at a point can be represented as 
a vector-vector product:



Inverse FFT continued

Corollary: Evaluating a polynomial at many points can be represented 
as a matrix-vector product

1 𝑥0

1 𝑥1

𝑥0
2 …

𝑥1
2 …

𝑥0
𝑁−1

𝑥1
𝑁−1

1 𝑥2

⋮ ⋮
𝑥2

2 …

⋮

𝑥2
𝑁−1

⋮

 1 𝑥𝑁−1 𝑥𝑁−1
2 …

⋱
𝑥𝑁−1

𝑁−1

𝑎0

𝑎1

⋮

𝑎𝑁−1

=

𝐴(𝑥0)
𝐴(𝑥1)

⋮

𝐴(𝑥𝑁−1)
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Theorem (Vandermonde): This matrix is invertible iff the 𝑥𝑖 are distinct



𝐹𝐹𝑇 𝜔, 𝑁 =

1 1
1 𝜔

1 …
𝜔2 …

1
𝜔𝑁−1

1 𝜔2

⋮ ⋮
𝜔4 …

⋮
𝜔2(𝑁−1)

⋮

 1 𝜔𝑁−1 𝜔2(𝑁−1) …

⋱

𝜔 𝑁−1 2

• Element in row 𝑘, column 𝑗, is 𝜔𝑘 𝑗
= 𝜔𝑘𝑗  

Inverse FFT continued

• In our case, 𝑥𝑘 = 𝜔𝑘  where 𝜔 is a principle 𝑁th root of unity, so
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We want to figure 
out 𝑭𝑭𝑻−𝟏(𝝎, 𝑵)



Inverse FFT continued

What is the product of 𝐹𝐹𝑇 𝜔, 𝑁 × 𝐹𝐹𝑇(𝜔−1, 𝑁)? The (𝑘, 𝑗) entry is
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Idea: Consider FFT with the inverse root of unity, i.e.

𝐹𝐹𝑇(𝜔−1, 𝑁)



Inverse FFT continued

• Entry (𝑘, 𝑗) of 𝐹𝐹𝑇 𝜔, 𝑁 × 𝐹𝐹𝑇(𝜔−1, 𝑁) is:

෍

𝑠=0

𝑁−1

𝜔−𝑘𝑠𝜔𝑠𝑗

• What does the diagonal of the product look like? (𝑘 = 𝑗)
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Inverse FFT continued

• Entry (𝑘, 𝑗) of 𝐹𝐹𝑇 𝜔, 𝑁 × 𝐹𝐹𝑇(𝜔−1, 𝑁) is:

෍

𝑠=0

𝑁−1

𝜔−𝑘𝑠𝜔𝑠𝑗

• What do the non-diagonal entries of the product look like? (𝑘 ≠ 𝑗)
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Reminder: 𝜔 is a primitive root of unity

ቊ𝜔𝑁 = 1 
𝜔𝑘 ≠ 1 for 0 < 𝑘 < 𝑁



Inverse FFT continued

• So, we’ve just showed that

𝐹𝐹𝑇 𝜔, 𝑁 × 𝐹𝐹𝑇 𝜔−1, 𝑁 =
𝑁 0 0
0 ⋱ 0
0 0 𝑁

= 𝑁
1 0 0
0 ⋱ 0
0 0 1

• Therefore

𝐹𝐹𝑇−1 𝜔, 𝑁 = 
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Back to multiplication
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1. Pick 𝑵 = 𝟐𝒅 + 𝟏 points 𝒙𝟎, 𝒙𝟏, … , 𝒙𝑵−𝟏 (Pick 𝑵𝐭𝐡 roots of unity)

2. Evaluate 𝑨 𝒙𝟎 , … , 𝑨(𝒙𝑵−𝟏) and 𝑩 𝒙𝟎 , … , 𝑩(𝒙𝑵−𝟏) (Using FFT)

3. Compute 𝑪 𝒙𝒌 = 𝑨 𝒙𝒌  𝑩(𝒙𝒌) 

4. Interpolate 𝑪 𝒙𝟎 , … , 𝑪(𝒙𝑵−𝟏) to get the coefficients of 𝑪 (Inverse FFT)

Runtime:



FFT over finite fields (optional)

• We defined FFT in terms of roots of unity over complex numbers

• Did we really need to use complex numbers?
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• We needed 𝑁 𝑁th roots of unity to do divide-and-conquer

• Other fields have roots of unity too!

• E.g., integers mod 𝑝 for a prime 𝑝



FFT over finite fields (optional)

Caveats:

• Need to pick a sufficiently large prime 𝑝.

• Not all primes work for any 𝑁. A good choice is (𝑐𝑁 + 1).

• The field must have 𝑁 𝑁th roots of unity (guaranteed if 𝑝 = 𝑐𝑁 + 1).

• Must find a primitive 𝑁th root of unity (doable with number theory)
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Take-home messages

• FFT is super cool

• The first key idea was to divide a polynomial into odd and even terms 
and use divide-and-conquer.

• To make the points line up in the recursive case, we had to evaluate 
the polynomials at roots of unity.
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