

Algorithm Design and Analysis

The Fast Fourier Transform

Goals for today

- Review some math, i.e., **polynomials** and **complex numbers**
- Derive the **Fast Fourier Transform** algorithm, and use it to produce a fast algorithm for polynomial multiplication
- (Optional) time permitting, FFT over finite fields

Quick review: polynomials

Definition: A polynomial of degree d is a function p of the form:

$$p(x) := \sum_{i=0}^d c_i x^i = c_d x^d + c_{d-1} x^{d-1} + \cdots + c_1 x + c_0$$

- Uniquely described by its coefficients $\langle c_d, c_{d-1}, \dots, c_1, c_0 \rangle$
- Uniquely described by its value at $d + 1$ distinct points (the unique reconstruction theorem)

Quick review: polynomials

Given polynomials $A(x)$ and $B(x)$,

$$A(x) = a_0 + a_1x + a_2x^2 + \cdots + a_dx^d$$

$$B(x) = b_0 + b_1x + b_2x^2 + \cdots + b_dx^d$$

Their product is

$$C(x) = c_0 + c_1x + c_2x^2 + \cdots + c_{2d}x^{2d}$$

where

$$c_k = \sum_{i+j=k} a_i b_j = \sum_{i=0}^k a_i b_{k-i}$$

Review: complex numbers

Definition: The field of **complex numbers** consists of numbers of the form

$$a + bi$$

- $i^2 = -1$ by definition
- Useful because every polynomial equation has a solution over the complex numbers. Not true over reals.

$$x^2 + 1 = 0$$

Roots of unity

Definition: An n^{th} root of unity is an n^{th} root of 1, i.e.,

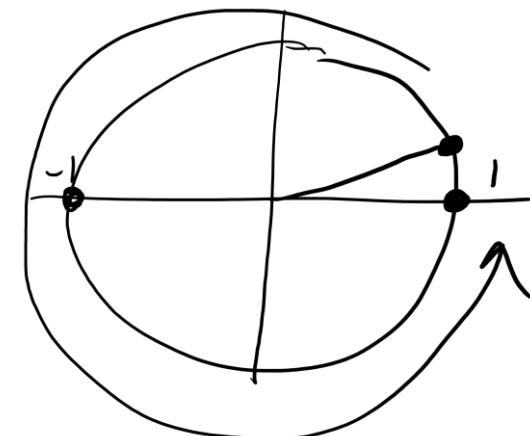
$$\omega^n = 1$$

- There are exactly n complex n^{th} roots of unity, given by

$$e^{\frac{2\pi i k}{n}}, \quad k = 0, 1, \dots, n - 1$$

- Can also write

$$e^{\frac{2\pi i k}{n}} = \left(e^{\frac{2\pi i}{n}}\right)^k$$



Roots of unity

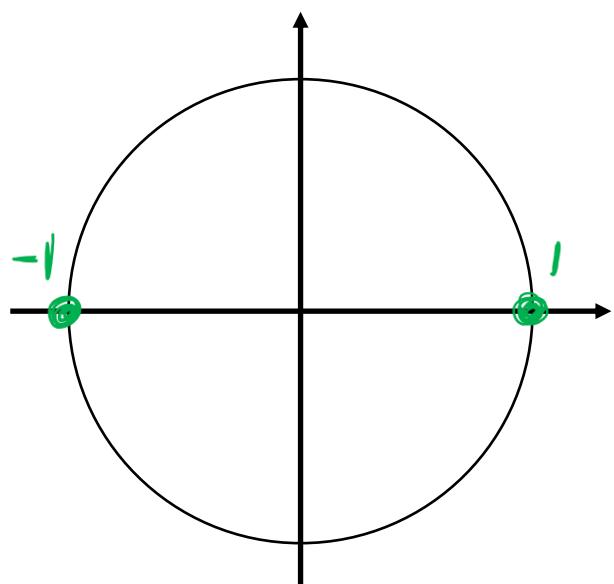
- The number $e^{\frac{2\pi i}{n}}$ is called a **primitive n^{th} root of unity**

$$e^{\frac{2\pi i k}{n}} = \left(e^{\frac{2\pi i}{n}}\right)^k$$

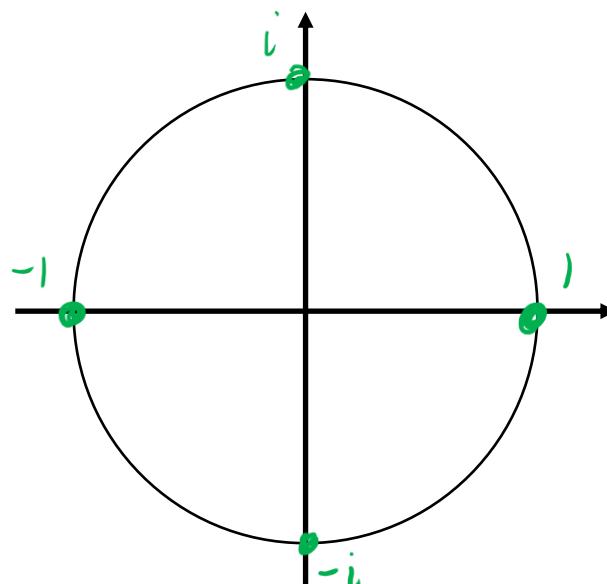
- **Definition:** Formally, ω is a primitive n^{th} root of unity if

$$\begin{cases} \omega^n = 1 \\ \omega^k \neq 1 \text{ for } 0 < k < n \end{cases}$$

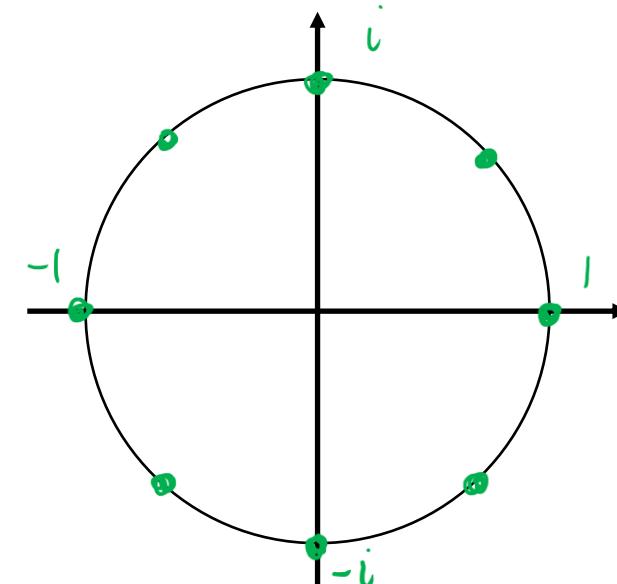
Roots of unity



2nd roots of unity



4th roots of unity



8th roots of unity

Back to polynomial multiplication

- Directly using the definition of the product of two polynomials would give us an $O(d^2)$ algorithm
- Karatsuba can bring this down to $O(d^{1.58})$
- What if we used a different representation?

A: $A(x_0), A(x_1), A(x_2), \dots, A(x_d), \dots, A(x_{2d})$

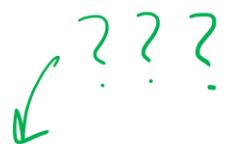
\times

B: $B(x_0), B(x_1), B(x_2), \dots, B(x_d), \dots, B(x_{2d})$

\equiv

C: $C(x_0), C(x_1), C(x_2), \dots, C(x_d), \dots, C(x_{2d})$

Fast polynomial multiplication

1. Pick $N = 2d + 1$ points x_0, x_1, \dots, x_{N-1} 
2. Evaluate $A(x_0), A(x_1), \dots, A(x_{N-1})$ and $B(x_0), B(x_1), \dots, B(x_{N-1})$
3. Compute $C(x_k) = A(x_k) \times B(x_k)$ $\mathcal{O}(N)$
4. Interpolate $C(x_0), \dots, C(x_{N-1})$ to get the coefficients of C

How do we do steps 2 and 4 efficiently???

To Point-Value Form

- Consider the polynomial A of degree 7

$$A(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7$$

- Suppose we want to evaluate $A(1)$ and $A(-1)$

$$A(1) = a_0 + a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7$$

$$A(-1) = a_0 - a_1 + a_2 - a_3 + a_4 - a_5 + a_6 - a_7$$

$$Z = a_0 + a_2 + a_4 + a_6$$

$$A(1) = Z + W$$

$$W = a_1 + a_3 + a_5 + a_7$$

$$A(-1) = Z - W$$

How to make it recursive?

- Consider the polynomial A of degree 7

$$A(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5 + a_6x^6 + a_7x^7$$

- What if we split in half (like last slide) but keep it as a polynomial?

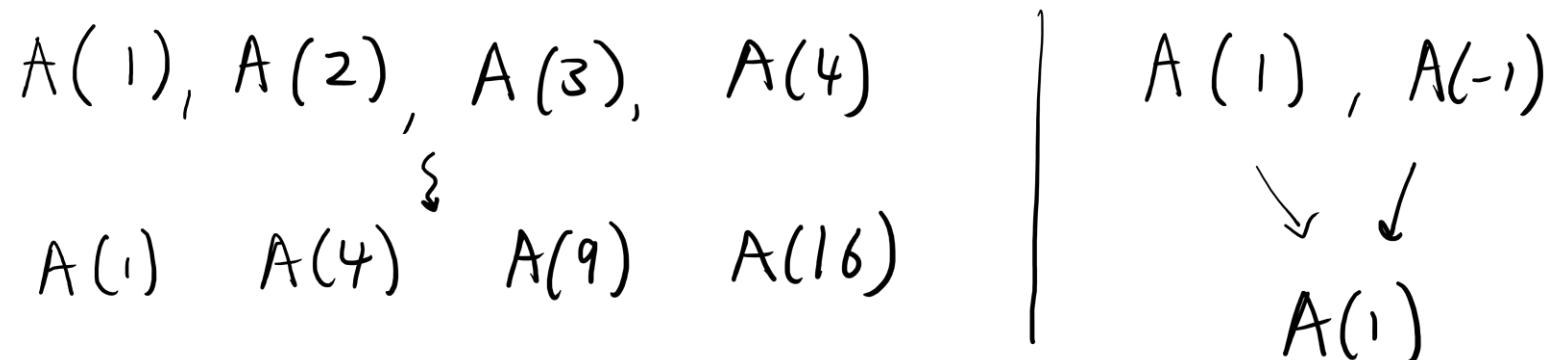
$$\begin{aligned} Z &= a_0 + a_2 + a_4 + a_6 \\ W &= a_1 + a_3 + a_5 + a_7 \end{aligned} \quad \rightarrow \quad \begin{aligned} A_{\text{even}}(x) &= a_0 + a_2x + a_4x^2 + a_6x^3 \\ A_{\text{odd}}(x) &= a_1 + a_3x + a_5x^2 + a_7x^3 \end{aligned}$$

$$A(x) = A_{\text{even}}(x^2) + x \cdot A_{\text{odd}}(x^2)$$

A divide-and-conquer idea

$$A(x) = A_{\text{even}}(x^2) + x A_{\text{odd}}(x^2)$$

- This formula gives us a key ingredient for *divide-and-conquer*
 - We want to evaluate an N -term polynomial at N points
 - Break into two $N/2$ -term polynomials and evaluate at $N/2$ points
 - Combine the two halves using the formula above



What points should we use for x ?

- But what to do about the x^2
- We want to evaluate N points and recurse on a problem that evaluates $N/2$ points... such that the squares of the N points are the $N/2$ points...

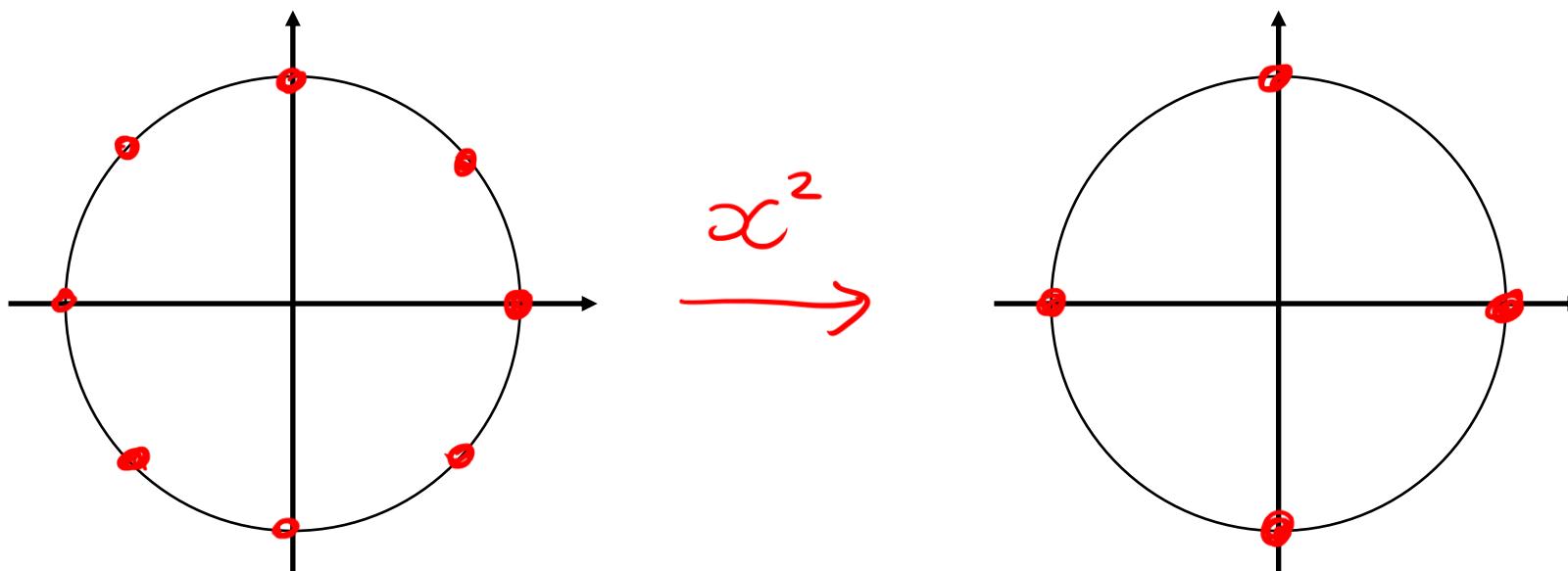


Roots of unity to the rescue!!!

- Recall the n^{th} roots of unity over the complex field are

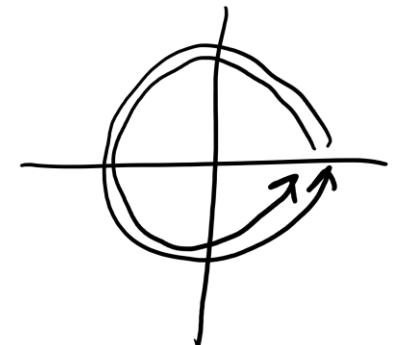
$$\omega^k \quad \text{for } k = 0, 1, \dots, n - 1$$

where $\omega = e^{\frac{2\pi i}{n}}$ is our “primitive” n^{th} root of unity



The Fast Fourier Transform

- Assume N is a power of two (pad with zero coefficients)
- Choose x_0, x_1, \dots, x_{N-1} to be N^{th} roots of unity
- In other words, set $\omega = \exp\left(\frac{2\pi i}{N}\right)$ then set $x_k = \omega^k$
- To evaluate $A(x)$ at $\omega^0, \omega^1, \omega^2, \dots, \omega^{N-1}$
 - Break into $A_{\text{even}}(x)$ and $A_{\text{odd}}(x)$
 - Evaluate those at $\omega^0, \omega^2, \omega^4, \dots$ **The $(N/2)^{\text{th}}$ roots of unity!!!**
 - Combine using $A(\omega^k) = A_{\text{even}}(\omega^{2k}) + \omega^k A_{\text{odd}}(\omega^{2k})$



FFT($[a_0, a_1, \dots, a_{N-1}]$, ω , N) = { *// Returns $F = [A(\omega^0), A(\omega^1), \dots, A(\omega^{N-1})]$*

if $N = 1$ then return $[a_0]$

$E \leftarrow \text{FFT}(\underline{[a_0, a_2, \dots, a_{N-2}]}, \omega^2, N/2)$

$O \leftarrow \text{FFT}(\underline{[a_1, a_3, \dots, a_{N-1}]}, \omega^2, N/2)$

$x \leftarrow 1$ *// x stores ω^k*

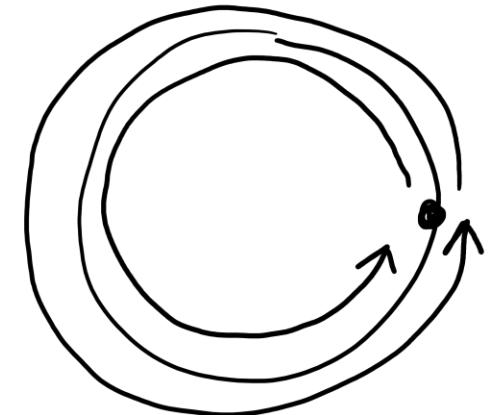
for $k = 0$ to $N - 1$ do { *// Compute $A(\omega^k) = A_{\text{even}}(\omega^{2k}) + \omega^k A_{\text{odd}}(\omega^{2k})$*

$A[k] \leftarrow \underline{E[k \bmod \frac{N}{2}] + \omega^k \cdot O[k \bmod \frac{N}{2}]}$

$x \leftarrow x \times \omega$ *// In practice, beware rounding errors...*

} return A

}



Back to multiplication

1. Pick $N = 2d + 1$ points x_0, x_1, \dots, x_{N-1} (Pick N^{th} roots of unity)
2. Evaluate $A(x_0), \dots, A(x_{N-1})$ and $B(x_0), \dots, B(x_{N-1})$ (Using FFT)
3. Compute $C(x_k) = A(x_k) B(x_k)$
4. Interpolate $C(x_0), \dots, C(x_{N-1})$ to get the coefficients of C

One step to go...

Inverse FFT

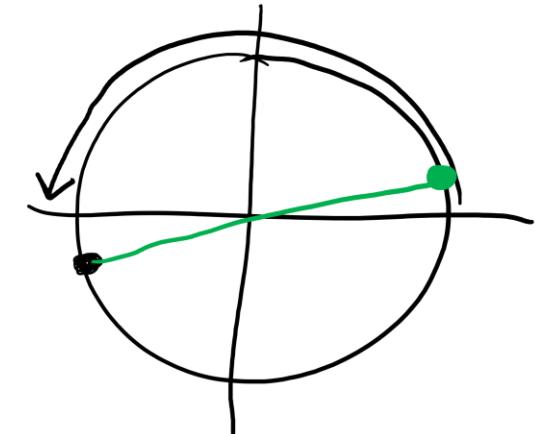
- Given $C(\omega^0), C(\omega^1), \dots, C(\omega^{N-1})$ where $N = 2d + 1$
- We want to get the N coefficients of $C(x)$ back
- To get some intuition, lets look at the forward algorithm

$$A[k] \leftarrow E \left[k \bmod \frac{N}{2} \right] + \omega^k \cdot O \left[k \bmod \frac{N}{2} \right]$$

- Notice that each term of E and O contributes ***exactly twice*** because of the mod

The Inverse Intuition

$$A[k] \leftarrow E \left[k \bmod \frac{N}{2} \right] + \omega^k \cdot O \left[k \bmod \frac{N}{2} \right]$$



- Notice that each term of E and O contributes ***exactly twice*** because of the mod

$$A_k = E_k + \omega^k \cdot O_k$$

$$A_{k+N/2} = E_k - \omega^k \cdot O_k$$

$$E_k = \frac{1}{2} (A_k + A_{k+N/2})$$

$$O_k = \frac{1}{2} \omega^{-k} (A_k - A_{k+N/2})$$

- What if we rewrite this in matrix form?

The Magic is in the Root

$$\begin{pmatrix} A_k \\ A_{k+n/2} \end{pmatrix} = \begin{pmatrix} 1 & \omega_n^k \\ 1 & -\omega_n^k \end{pmatrix} \begin{pmatrix} E_k \\ O_k \end{pmatrix} \quad \text{forward}$$

$$\begin{pmatrix} E_k \\ O_k \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ \omega_n^{-k} & -\omega_n^{-k} \end{pmatrix} \begin{pmatrix} A_k \\ A_{k+n/2} \end{pmatrix} \quad \text{invert}$$

The magic is in the ***inverse root of unity*** ω^{-k} (and matrices)

Back to the Inverse FFT

- Given $C(\omega^0), C(\omega^1), \dots, C(\omega^{N-1})$ where $N = 2d + 1$
- We want to get the N coefficients of $C(x)$ back

Observation: Evaluating a polynomial at a point can be represented as a vector-vector product:

$$(x^0 \ x^1 \ \dots \ x^{N-1}) \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_{N-1} \end{pmatrix} = A(x)$$

Inverse FFT continued

Corollary: Evaluating a polynomial at many points can be represented as a matrix-vector product

$$\begin{bmatrix} 1 & x_0 & x_0^2 & \dots & x_0^{N-1} \\ 1 & x_1 & x_1^2 & \dots & x_1^{N-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{N-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{N-1} & x_{N-1}^2 & \dots & x_{N-1}^{N-1} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{N-1} \end{bmatrix} = \begin{bmatrix} A(x_0) \\ A(x_1) \\ \vdots \\ A(x_{N-1}) \end{bmatrix}$$

Theorem (Vandermonde): This matrix is invertible iff the x_i are distinct

Inverse FFT continued

- In our case, $x_k = \omega^k$ where ω is a principle N^{th} root of unity, so

$$FFT(\omega, N) = \begin{bmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & \omega & \omega^2 & \dots & \omega^{N-1} \\ 1 & \omega^2 & \omega^4 & \dots & \omega^{2(N-1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \dots & \omega^{(N-1)^2} \end{bmatrix}$$

- Element in row k , column j , is $(\omega^k)^j = \omega^{kj}$

We want to figure out $FFT^{-1}(\omega, N)$

Inverse FFT continued

Idea: Consider FFT with the inverse root of unity, i.e.

$$FFT(\omega^{-1}, N)$$

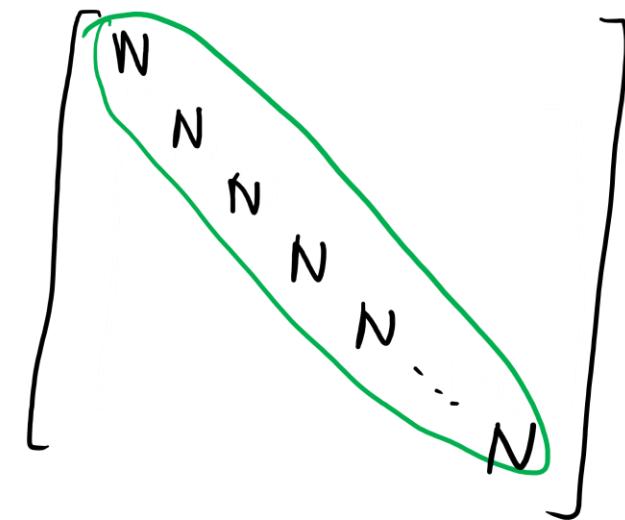
What is the product of $FFT(\omega, N) \times FFT(\omega^{-1}, N)$? The (k, j) entry is

$$\begin{aligned} (A \cdot B)_{kj} &= \sum_{s=0}^{N-1} a_{ks} \cdot b_{sj} \\ &\rightarrow \sum_{s=0}^{N-1} \omega^{-ks} \cdot \omega^{sj} \end{aligned}$$

Inverse FFT continued

- Entry (k, j) of $FFT(\omega, N) \times FFT(\omega^{-1}, N)$ is:

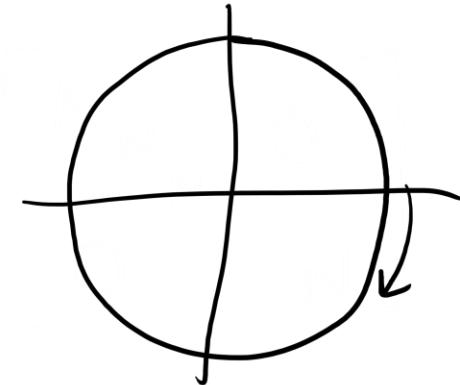
$$\sum_{s=0}^{N-1} \omega^{-ks} \omega^{sj}$$



- What does the diagonal of the product look like? ($k = j$)

$$\sum_{s=0}^{N-1} \omega^{-js} \omega^{sj} = \sum_{s=0}^{N-1} 1 = N$$

Inverse FFT continued



- Entry (k, j) of $FFT(\omega, N) \times FFT(\omega^{-1}, N)$ is:

$$\sum_{s=0}^{N-1} \omega^{-ks} \omega^{sj}$$

Reminder: ω is a primitive root of unity

$$\begin{cases} \omega^N = 1 \\ \omega^k \neq 1 \text{ for } 0 < k < N \end{cases}$$

- What do the non-diagonal entries of the product look like? ($k \neq j$)

$$\sum_{s=0}^{N-1} \omega^{(j-k)s} = \sum_{s=0}^{N-1} (\omega^{j-k})^s = \frac{1 - (\omega^{j-k})^N}{1 - \omega^{j-k}}$$

↑

GEOMETRIC SERIES

$$= \frac{1 - (\omega^N)^{j-k}}{1 - \omega^{j-k}} = \frac{0}{???(\text{nonzero})}$$

Inverse FFT continued

- So, we've just showed that

$$FFT(\omega, N) \times FFT(\omega^{-1}, N) = \begin{bmatrix} N & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & N \end{bmatrix} = N \begin{bmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Therefore

$$FFT^{-1}(\omega, N) = \frac{1}{N} FFT(\omega^{-1}, N)$$

Back to multiplication

1. Pick $N = 2d + 1$ points x_0, x_1, \dots, x_{N-1} (Pick N^{th} roots of unity)
2. Evaluate $A(x_0), \dots, A(x_{N-1})$ and $B(x_0), \dots, B(x_{N-1})$ (Using FFT)
3. Compute $C(x_k) = A(x_k) B(x_k)$
4. Interpolate $C(x_0), \dots, C(x_{N-1})$ to get the coefficients of C (Inverse FFT)

Runtime: $\mathcal{O}(N \log N)$

□

FFT over finite fields (optional)

- We defined FFT in terms of roots of unity over complex numbers
- Did we really *need* to use complex numbers?
- We needed $N N^{\text{th}}$ roots of unity to do divide-and-conquer
- Other fields have roots of unity too!
- E.g., integers mod p for a prime p

FFT over finite fields (optional)

Caveats:

- Need to pick a sufficiently large prime p .
- Not all primes work for any N . A good choice is $(cN + 1)$.
- The field must have N N^{th} roots of unity (guaranteed if $p = cN + 1$).
- Must find a primitive N^{th} root of unity (doable with number theory)

Take-home messages

- FFT is super cool
- The first key idea was to divide a polynomial into odd and even terms and use *divide-and-conquer*.
- To make the points line up in the recursive case, we had to evaluate the polynomials at *roots of unity*.