
Algorithm
Design and Analysis

Computational Geometry (Incremental Algorithms)

1

Goals for today

• Apply randomized incremental algorithms to geometry

• Give randomized incremental algorithms for two key problems:

• The closest pair problem

• The smallest enclosing circle problem

2

Closest Pair

3

The closest pair problem

Brute force solution:

4

Problem (closest pair): Given 𝑛 points 𝑃, define 𝐶𝑃(𝑃) to be the
closest distance, i.e.

𝐶𝑃 𝑃 = min
𝑝,𝑞∈𝑃

𝑝 − 𝑞

Improving brute force: incremental

• Brute force reuses no information whatsoever

• Geometry problems often have a lot of reusable information!

5

• Suppose I know the closest pair among the first 𝑖 points…

The problem

6

New Question: How do we find the set of points within distance 𝑑 of
the new point?

A grid data structure!

• If the grid size is sufficiently large, closest pair will be in same cell, or
in neighboring cells

• If the grid size is too large, there will be too many points per cell…

7

Goal: Choose the right grid size.

• Want few points per cell, so that looking in a cell is fast

• Want the closest pair to be in neighboring cells so we find them fast

The right grid size

Proof:

8

Claim (the right grid size): Given a grid with points 𝑃 and grid size 𝑟 =
𝐶𝑃(𝑃), no cell contains more than four points

The incremental approach

9

Key idea (incremental): Add the points one at a time
• Check neighboring cells to see if there’s a new closest pair
• If so, rebuild the grid with the new size
• Otherwise keep going

A grid data structure

• MakeGrid(𝑝, 𝑞): Make a grid containing 𝑝 and 𝑞, with 𝑟 = 𝑝 − 𝑞

• Lookup(𝐺, 𝑝): Given a grid 𝐺 and point 𝑝 (not currently in the grid),
we want to know whether 𝑝 is part of a new closest pair

• Insert(𝐺, 𝑝): Given a grid 𝐺 and point 𝑝, inserts 𝑝 and returns the grid
size (which may have changed because of 𝑝)

10

Invariant (grid size): Given a grid containing a set of points 𝑃, we
want the grid size 𝑟 to always equal 𝐶𝑃(𝑃)

Implementing the grid

Issue: The number of grid cells could be unbounded…

11

Implementing the grid

Implement MakeGrid(𝒑, 𝒒):

12

Implementing the grid

Implement Lookup(𝑮, 𝒒):

13

Implementing the grid

Implement Insert(𝑮, 𝒒):

14

Runtime

Proof:

15

Randomization to the rescue!!!

Claim (runtime): The worst-case runtime of the incremental grid
algorithm is 𝑂 𝑛2

Randomized runtime

Proof:

16

Claim (randomized incremental is fast): Randomly shuffle the points,
then run the incremental algorithm, it takes 𝑂(𝑛) time in expectation

Randomized runtime (continued)

We need to bound Pr[𝑋𝑖 = 1]… (i.e., Pr[𝐶𝑃 𝑃𝑖 ≠ 𝐶𝑃 𝑃𝑖−1])

17

Smallest enclosing circle

18

The smallest enclosing circle

19

Problem (Smallest enclosing circle): Given 𝑛 ≥ 2 points in two
dimensions, find the smallest circle that contains all of them

Base cases

Base case (two points):

20

Base cases

Base case (three points):

21

Case 1: Obtuse angle Case 2: Acute angle

Three points and a circle

22

Fact (unique circle): Given three non-colinear points, there is a unique
circle that goes through them

The general case

Given 𝑛 > 3 points, how many circles do we need to consider?

23

In other words: For any set of points, there exists 𝑖, 𝑗, 𝑘, such that

𝑆𝐸𝐶 𝑝1, … , 𝑝𝑛 = 𝑆𝐸𝐶(𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘)

Theorem (three points is always enough): For any set of points, the
smallest enclosing circle either touches two points 𝑝𝑖 , 𝑝𝑗 at a

diameter, or touches three points 𝑝𝑖 , 𝑝𝑗 , 𝑝𝑗 forming an acute triangle

Proof of theorem

Case 1 (no points):

24

Proof of theorem

Case 2 (one point):

25

Proof of theorem

Case 3 (two points, not on a diameter):

26

Proof of theorem

Case 4 (three points, no acute angle):

27

We just proved

28

• Either two points at a diameter, or

• Three points forming an acute triangle

Theorem: For any set of points, there exists 𝑖, 𝑗, 𝑘, such that

𝑆𝐸𝐶 𝑝1, … , 𝑝𝑛 = 𝑆𝐸𝐶(𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘)

Brute force algorithms

29

Algorithm 1 (brute force): Try all triples of points and find their
smallest enclosing circle. Check whether this circle contains every
point. Returns the smallest such circle.

Algorithm 2 (better brute force): Try all triples of points and find their
smallest enclosing circle. Return the largest such circle.

Beating brute force: incremental

When inserting 𝑝𝑖:

• Case 1: 𝑝𝑖 is inside the current circle. Great, do nothing!

• Case 2: 𝑝𝑖 is outside the current circle. Need to find the new one

30

Incremental approach: Insert points one by one and maintain the
smallest enclosing circle

Making incremental fast

31

Observation: When we add 𝑝𝑖, if it is not in the current circle, then it
is on the boundary of the new circle

Incremental algorithm

SEC(𝑝1, 𝑝2, … , 𝑝𝑛) = {

 Let C = circle touching 𝑝1 and 𝑝2

 for i = 3 to n do {

 if 𝑝𝑖 is not inside 𝐶 then

 𝐶 =

 }

 return 𝐶

}

32

Incremental algorithm continued

SEC(𝑝1, 𝑝2, … , 𝑝𝑘 , 𝑞) = {

 Let C = circle touching 𝑝1 and 𝑞

 for i = 2 to k do {

 if 𝑝𝑖 is not inside 𝐶 then

 𝐶 =

 }

 return 𝐶

}

33

Incremental algorithm deeper again

34

SEC2(𝑝1, 𝑝2, … , 𝑝𝑘 , 𝑞1, 𝑞2) = {

 Let C = circle touching 𝑞1 and 𝑞2
 for i = 1 to k do {

 if 𝑝𝑖 is not inside 𝐶 then

 𝐶 =

 }

 return 𝐶

}

Runtime

35

Lemma (SEC2): SEC2 runs in 𝑂(𝑘) time

Lemma (SEC1): In the worst case, SEC1 runs in 𝑂(𝑘2) time

Theorem (SEC): In the worst case, SEC runs in 𝑂(𝑛3) time

Randomization to the rescue!!!

36

Claim (randomized SEC is fast): If we randomly shuffle the points in
SEC and SEC1, then SEC1 runs in 𝑂(𝑘) expected time and SEC runs in
𝑂(𝑛) expected time

SEC([𝑝1, 𝑝2, … , 𝑝𝑛]) = {

 random_shuffle(𝑝)

 C = circle touching 𝑝1 and 𝑝2

 for i = 3 to n do

 if 𝑝𝑖 is not inside 𝐶 then

 C = circle touching 𝑝1 and 𝑝𝑖

 for j = 2 to i-1 do

 if 𝑝𝑗 is not inside 𝐶 then

 C = circle touching 𝑝𝑖 and 𝑝𝑗

 for k = 1 to j-1 do

 if 𝑝𝑘 is not inside 𝐶 then

 𝐶 = circle touching 𝑝𝑖 , 𝑝𝑗 , 𝑝𝑘

 return C

Putting it all together

37

SEC2: 𝑂(j)

Pr[entering loop] ≤ 3/j

SEC2: 𝑂 1
in expectation

SEC1: 𝑶 𝒊
in expectation

Pr[entering loop] ≤ 3/i

SEC1: 𝑶 𝟏
in expectation

SEC: 𝑶 𝒏
in expectation!!

Summary

• Randomized incremental algorithms are pretty great. We can turn
slow brute force algorithms into expected linear-time algorithms!

• We got 𝑂 𝑛 expected time for the closest pair and smallest
enclosing circle problems

38

	Slide 1: Algorithm Design and Analysis
	Slide 2: Goals for today
	Slide 3: Closest Pair
	Slide 4: The closest pair problem
	Slide 5: Improving brute force: incremental
	Slide 6: The problem
	Slide 7: A grid data structure!
	Slide 8: The right grid size
	Slide 9: The incremental approach
	Slide 10: A grid data structure
	Slide 11: Implementing the grid
	Slide 12: Implementing the grid
	Slide 13: Implementing the grid
	Slide 14: Implementing the grid
	Slide 15: Runtime
	Slide 16: Randomized runtime
	Slide 17: Randomized runtime (continued)
	Slide 18: Smallest enclosing circle
	Slide 19: The smallest enclosing circle
	Slide 20: Base cases
	Slide 21: Base cases
	Slide 22: Three points and a circle
	Slide 23: The general case
	Slide 24: Proof of theorem
	Slide 25: Proof of theorem
	Slide 26: Proof of theorem
	Slide 27: Proof of theorem
	Slide 28: We just proved
	Slide 29: Brute force algorithms
	Slide 30: Beating brute force: incremental
	Slide 31: Making incremental fast
	Slide 32: Incremental algorithm
	Slide 33: Incremental algorithm continued
	Slide 34: Incremental algorithm deeper again
	Slide 35: Runtime
	Slide 36: Randomization to the rescue!!!
	Slide 37: Putting it all together
	Slide 38: Summary

