

Algorithm Design and Analysis

Computational Geometry (Incremental Algorithms)

Goals for today

- Apply **randomized incremental algorithms** to geometry
- Give randomized incremental algorithms for two key problems:
 - The **closest pair** problem
 - The **smallest enclosing circle** problem

Closest Pair

The closest pair problem

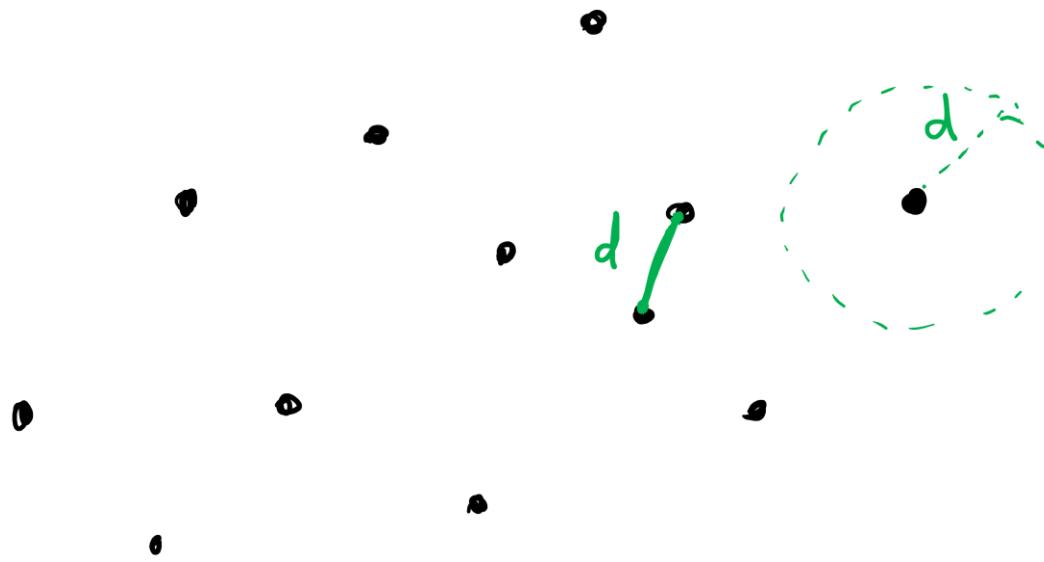
Problem (closest pair): Given n points P , define $CP(P)$ to be the closest distance, i.e.

$$CP(P) = \min_{p,q \in P} \|p - q\|$$

Brute force solution: Try all pairs $\rightarrow O(n^2)$

Improving brute force: incremental

- Brute force reuses no information whatsoever
- Geometry problems often have a lot of reusable information!
- Suppose I know the closest pair among the first i points...

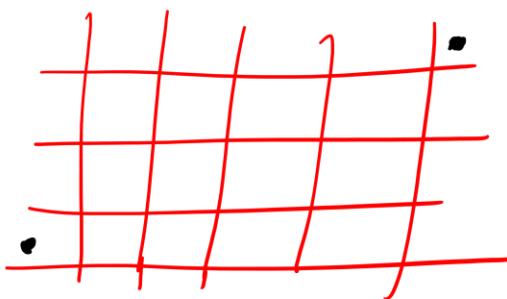
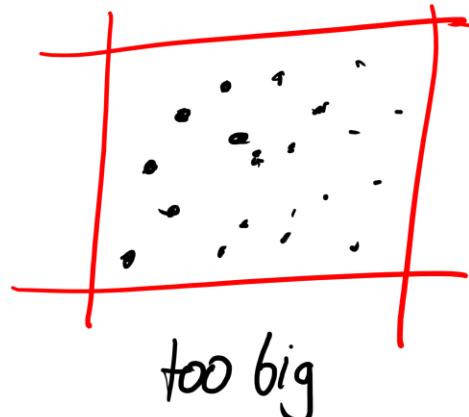
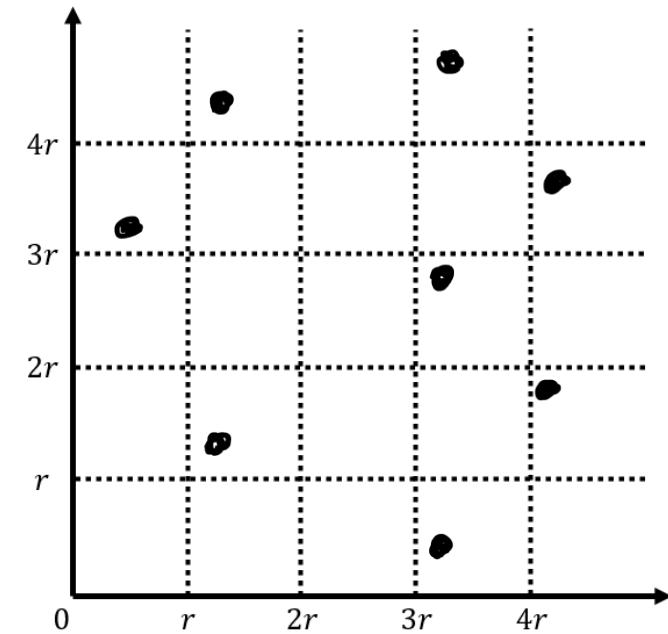


Only need to
check within
distance d

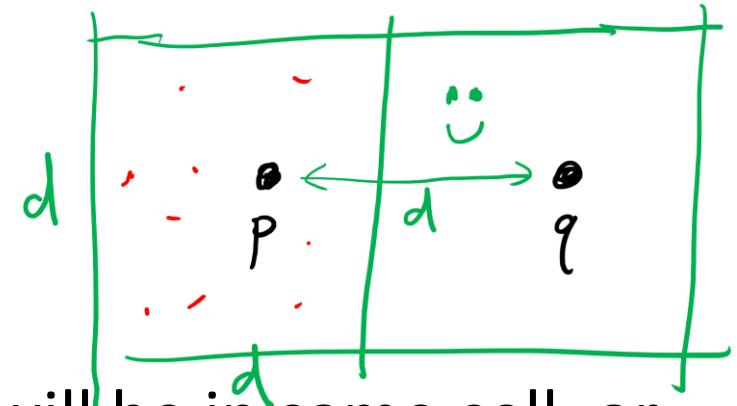
The problem

New Question: How do we find the set of points within distance d of the new point?

Bucket the points into grid cells



A grid data structure!



- If the grid size is sufficiently large, closest pair will be in same cell, or in neighboring cells
- If the grid size is too large, there will be too many points per cell...

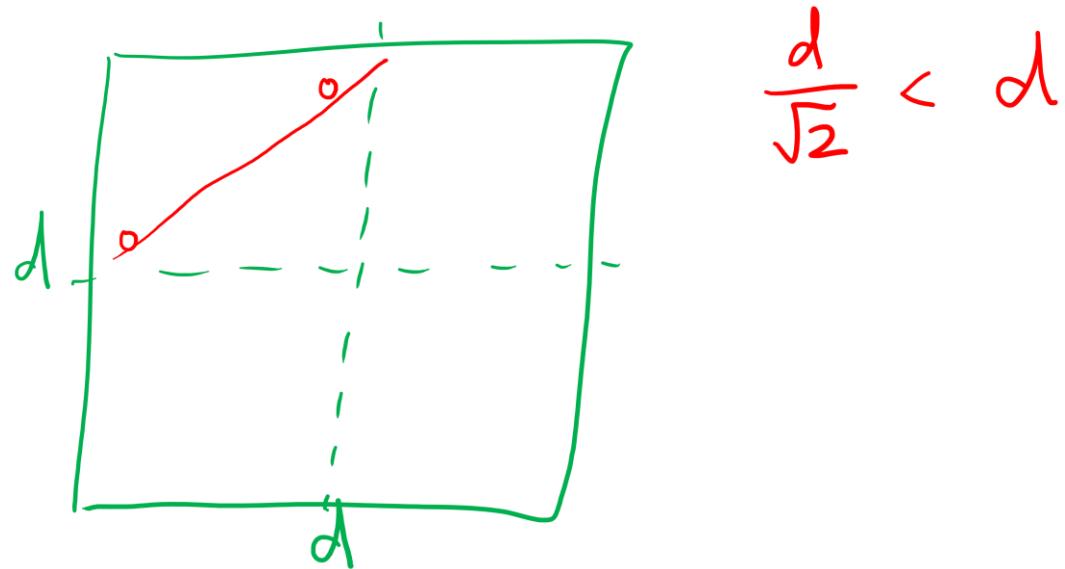
Goal: Choose the right grid size.

- Want few points per cell, so that looking in a cell is fast
- Want the closest pair to be in neighboring cells so we find them fast

The right grid size

Claim (the right grid size): Given a grid with points P and grid size $r = CP(P)$, no cell contains more than four points

Proof:



The incremental approach

Key idea (incremental): Add the points one at a time

- Check neighboring cells to see if there's a new closest pair
- If so, rebuild the grid with the new size
- Otherwise keep going

A grid data structure

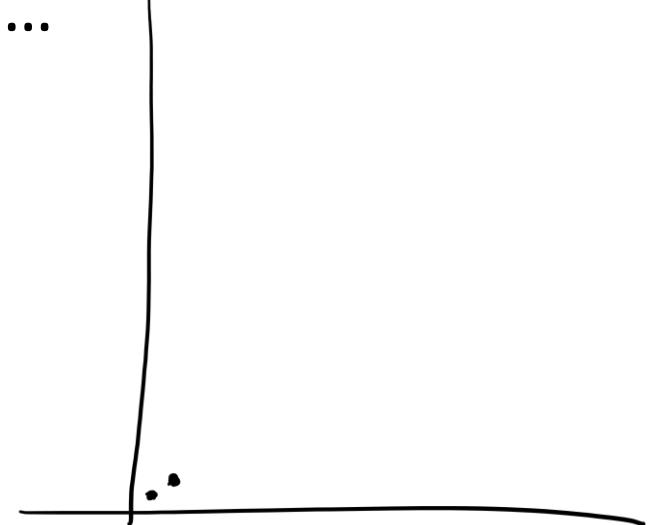
Invariant (grid size): Given a grid containing a set of points P , we want the grid size r to always equal $CP(P)$

- $\text{MakeGrid}(p, q)$: Make a grid containing p and q , with $r = \|p - q\|$
- $\text{Lookup}(G, p)$: Given a grid G and point p (not currently in the grid), we want to know whether p is part of a new closest pair
- $\text{Insert}(G, p)$: Given a grid G and point p , inserts p and returns the grid size (which may have changed because of p)

Implementing the grid

Issue: The number of grid cells could be unbounded...

Use a hashtable



Implementing the grid

Implement MakeGrid(p, q):

$$r = \|p - q\|$$

Insert p & q into hashtable

$(x, y) \rightarrow \left(\left\lfloor \frac{x}{r} \right\rfloor, \left\lfloor \frac{y}{r} \right\rfloor \right) \xrightarrow{\text{dict}} \text{list of points}$

Implementing the grid

Implement Lookup(G, q):

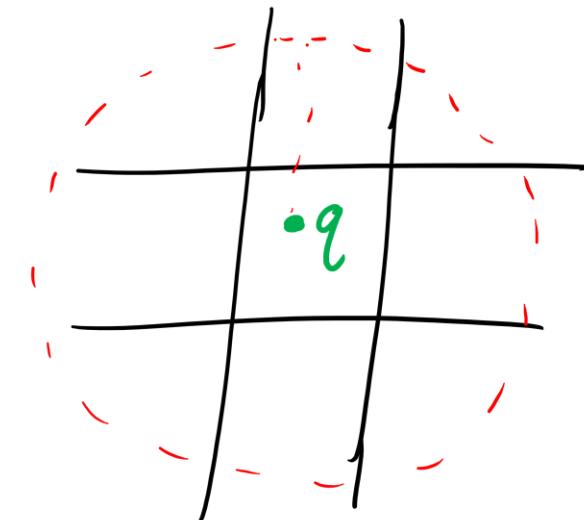
Search neighbouring grid cells

≤ 36 points (constant)

If $\exists p$ s.t $\|p - q\| < r$

return $P, \|p - q\|$

return None



Implementing the grid

Implement Insert(G, q):

If $P, r = \text{Lookup}(G, q)$ is not None:

 Rebuild my grid with distance r (expensive)

else

 put q in the current grid (cheap)

Runtime

Claim (runtime): The worst-case runtime of the incremental grid algorithm is $O(n^2)$

Proof:

• • • • •...

$$\text{Cost} = O\left(\sum_{i=1}^n i\right) = O(n^2)$$

Randomization to the rescue!!!

Randomized runtime

Claim (randomized incremental is fast): Randomly shuffle the points, then run the incremental algorithm, it takes $O(n)$ time in expectation

Proof:

$$P_i = \langle P_{\pi_1}, P_{\pi_2}, \dots, P_{\pi_i} \rangle$$

$$X_i = \begin{cases} 1 & \text{if } CP(P_i) \neq CP(P_{i-1}) \\ 0 & \text{o.w.} \end{cases} \quad (\text{answer changes})$$

$$T = \sum_{i=2}^n (1 + i \cdot X_i)$$

$$E[T] = O(n) + \sum_{i=2}^n i \cdot \Pr[CP(P_i) \neq CP(P_{i-1})]$$

Randomized runtime (continued)

We need to bound $\Pr[X_i = 1] \dots$ (i.e., $\Pr[CP(P_i) \neq CP(P_{i-1})]$)

Call a point q "critical" if $CP(P_i \setminus \{q\}) \neq CP(P_i)$

≤ 2 critical points

$$\Pr[CP(P_i) \neq CP(P_{i-1})]$$

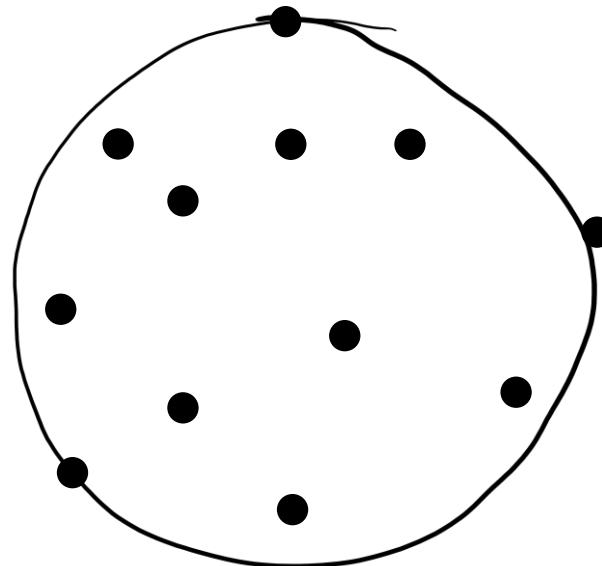
$$= \Pr[P_{n_i} \text{ is critical}] \leq \frac{2}{i}$$

$$\mathbb{E}[\tau] = O(n) + \sum_{i=2}^n i \cdot \frac{2}{i} = O(n)$$

Smallest enclosing circle

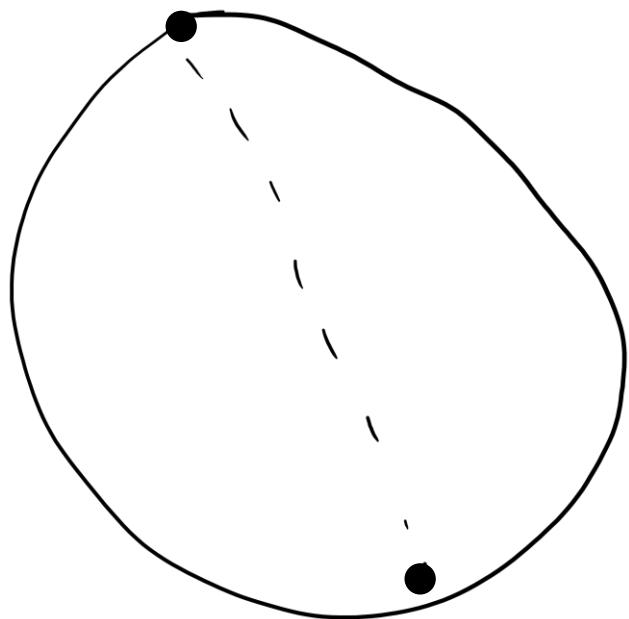
The smallest enclosing circle

Problem (Smallest enclosing circle): Given $n \geq 2$ points in two dimensions, find the smallest circle that contains all of them



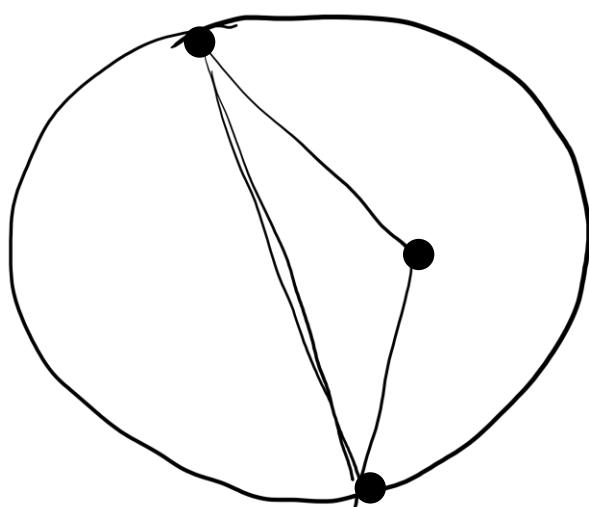
Base cases

Base case (two points):

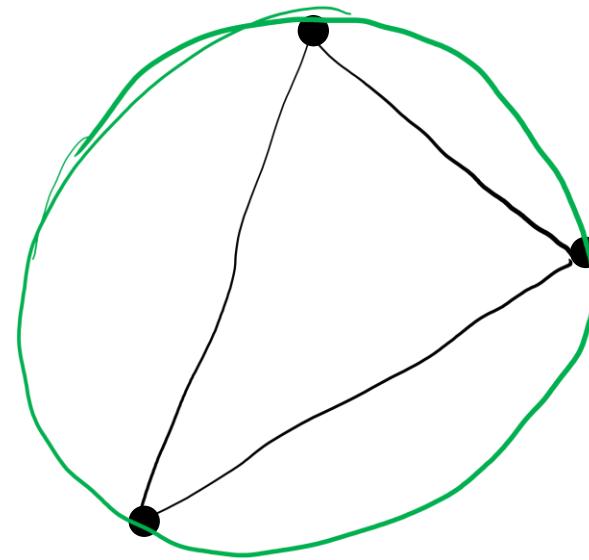


Base cases

Base case (three points):



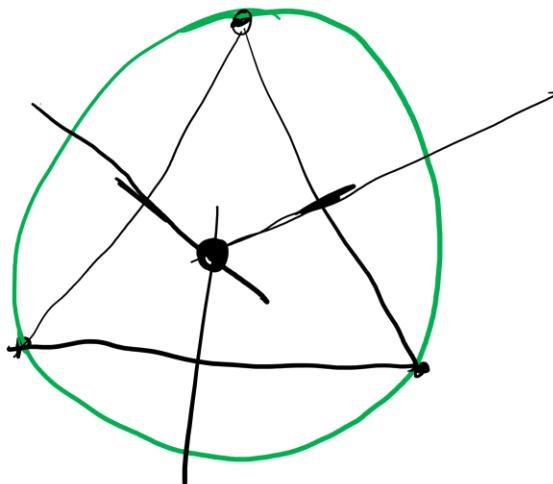
Case 1: Obtuse angle



Case 2: Acute angle

Three points and a circle

Fact (unique circle): Given three non-collinear points, there is a unique circle that goes through them



The general case

Given $n > 3$ points, how many circles do we need to consider?

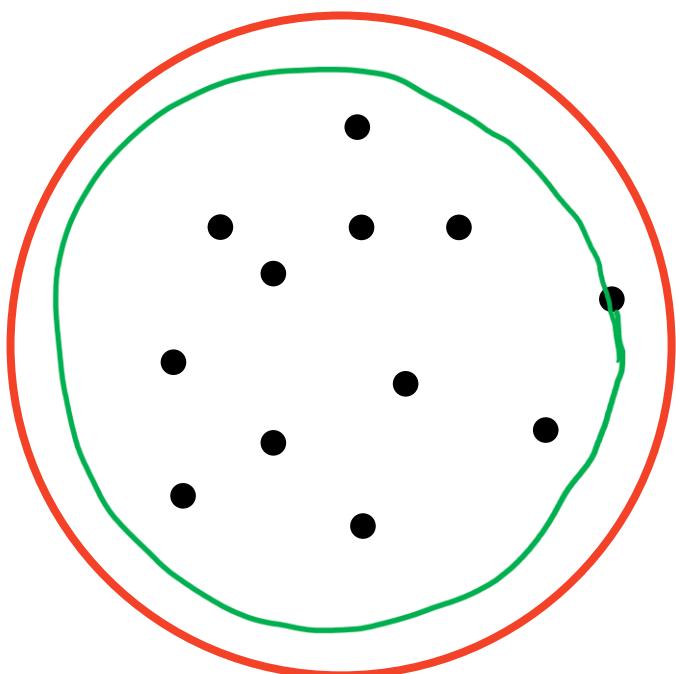
Theorem (three points is always enough): For any set of points, the smallest enclosing circle either touches two points p_i, p_j at a diameter, or touches three points p_i, p_j, p_k forming an **acute** triangle

In other words: For any set of points, there exists i, j, k , such that

$$SEC(p_1, \dots, p_n) = SEC(p_i, p_j, p_k)$$

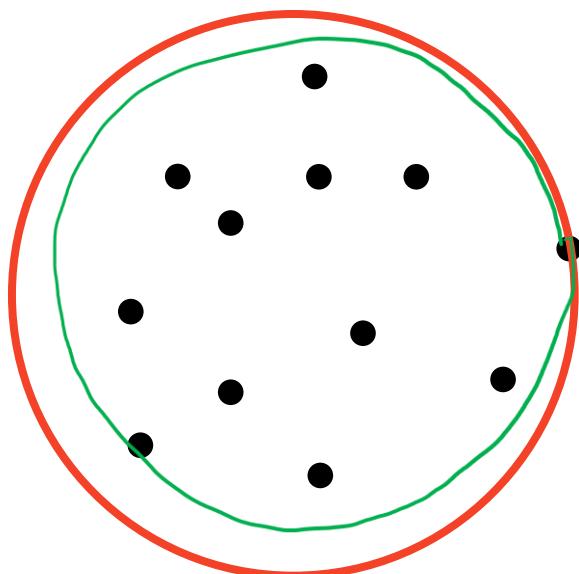
Proof of theorem

Case 1 (no points):



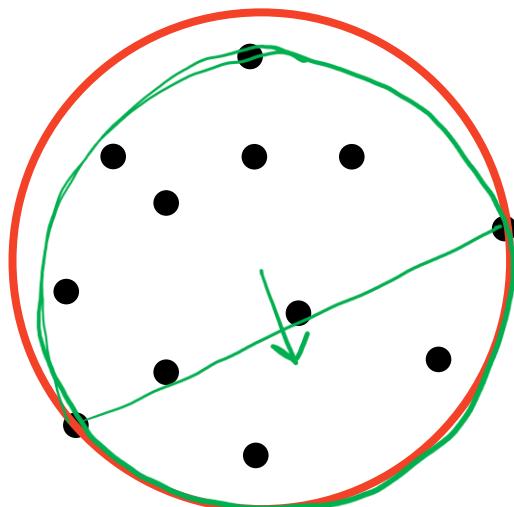
Proof of theorem

Case 2 (one point):



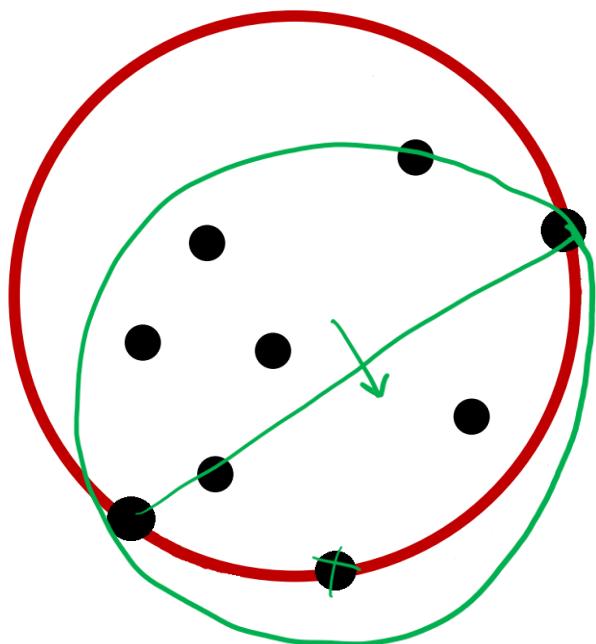
Proof of theorem

Case 3 (two points, not on a diameter):



Proof of theorem

Case 4 (three points, no acute angle):



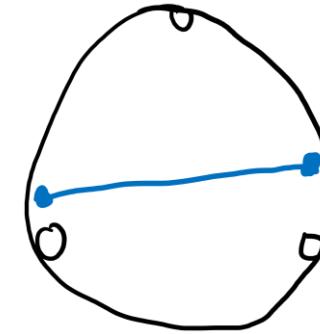
We just proved

Theorem: For any set of points, there exists i, j, k , such that

$$SEC(p_1, \dots, p_n) = SEC(p_i, p_j, p_k)$$

- Either two points at a diameter, or
- Three points forming an acute triangle

Brute force algorithms



Algorithm 1 (brute force): Try all triples of points and find their smallest enclosing circle. Check whether this circle contains every point. Returns the smallest such circle.

Algorithm 2 (better brute force): Try all triples of points and find their smallest enclosing circle. Return the **largest** such circle.

Beating brute force: incremental

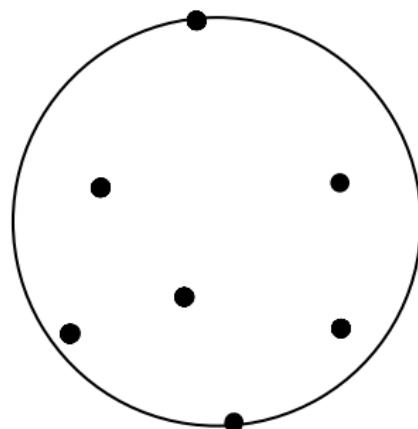
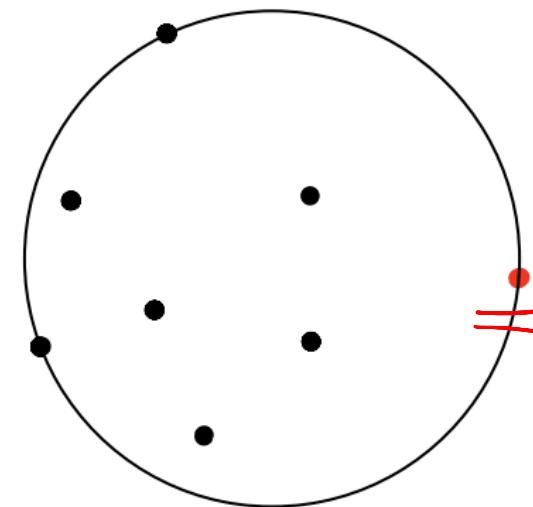
Incremental approach: Insert points one by one and maintain the smallest enclosing circle

When inserting p_i :

- ***Case 1:*** p_i is inside the current circle. Great, do nothing!
- ***Case 2:*** p_i is outside the current circle. Need to find the new one

Making incremental fast

Observation: When we add p_i , if it is not in the current circle, then it is on the boundary of the new circle



Incremental algorithm

```
SEC([ $p_1, p_2, \dots, p_n$ ]) = {
```

Let C = circle touching p_1 and p_2

```
for  $i = 3$  to  $n$  do {
```

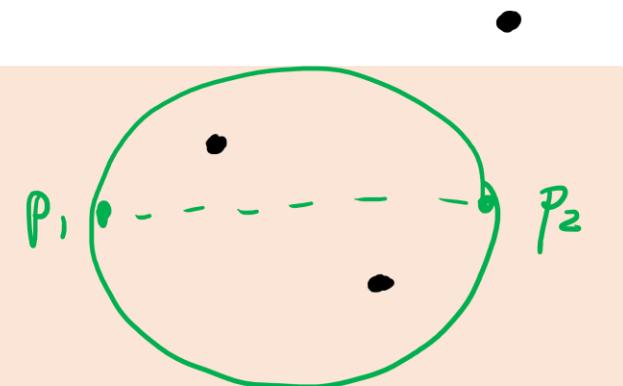
if p_i is not inside C then

```
 $C = \underline{SEC \underline{1} ([p_1, p_2, \dots, p_{i-1}], p_i)}$ 
```

```
}
```

```
return  $C$ 
```

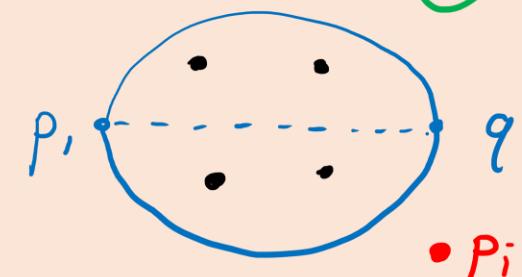
```
}
```



p_i is definitely
on boundary

Incremental algorithm continued

```
SEC([ $p_1, p_2, \dots, p_k$ ],  $q$ ) = {  
    Let  $C$  = circle touching  $p_1$  and  $q$   
    for  $i = 2$  to  $k$  do {  
        if  $p_i$  is not inside  $C$  then  
             $C = \underline{\underline{SEC \ 2 \ ([p_1, p_2, \dots, p_{i-1}], p_i, q)}}$   
    }  
    return  $C$   
}
```



Incremental algorithm deeper again

$\text{SEC2}([p_1, p_2, \dots, p_k], \underline{q_1}, \underline{q_2}) = \{$ on the boundary

Let C = circle touching q_1 and q_2

for $i = 1$ to k **do** {

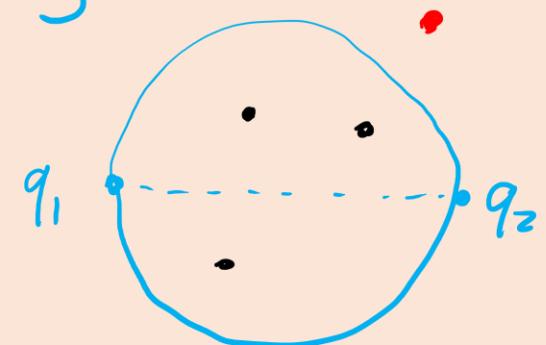
if p_i is not inside C **then**

$C = \underline{\text{SEC of } p_i, q_1, \text{ and } q_2}$ (base case)

}

return C

}



Runtime

Lemma (SEC2): SEC2 runs in $O(k)$ time

Lemma (SEC1): In the worst case, SEC1 runs in $O(k^2)$ time

Theorem (SEC): In the worst case, SEC runs in $O(n^3)$ time

Randomization to the rescue!!!

Claim (randomized SEC is fast): If we **randomly shuffle** the points in SEC and SEC1, then SEC1 runs in $O(k)$ expected time and SEC runs in $O(n)$ expected time

Theorem $\Rightarrow \leq 3$ "critical points"

$\Pr[\text{a point is critical}] \leq 3/i$

$\mathbb{E}[T] = O(n + \frac{3}{i} \cdot i) = O(n)$

Putting it all together

```
SEC([ $p_1, p_2, \dots, p_n$ ]) = {
    random_shuffle( $p$ )
     $C$  = circle touching  $p_1$  and  $p_2$ 
    for  $i = 3$  to  $n$  do
        if  $p_i$  is not inside  $C$  then
             $C$  = circle touching  $p_1$  and  $p_i$ 
            for  $j = 2$  to  $i-1$  do
                if  $p_j$  is not inside  $C$  then
                     $C$  = circle touching  $p_i$  and  $p_j$ 
                    for  $k = 1$  to  $j-1$  do
                        if  $p_k$  is not inside  $C$  then
                             $C$  = circle touching  $p_i, p_j, p_k$ 
    return  $C$ 
```

SEC: $O(n)$
in expectation!!

$\Pr[\text{entering loop}] \leq 3/i$

$\Pr[\text{entering loop}] \leq 3/j$
SEC1: $O(1)$
in expectation

SEC2: $O(j)$
in expectation

Summary

- **Randomized incremental algorithms** are pretty great. We can turn slow brute force algorithms into expected linear-time algorithms!
- We got $O(n)$ expected time for the **closest pair** and **smallest enclosing circle** problems