Algorithm
Design and Analysis

Computational Geometry (Incremental Algorithms)



Goals for today

* Apply randomized incremental algorithms to geometry

* Give randomized incremental algorithms for two key problems:
* The closest pair problem
* The smallest enclosing circle problem



Closest Pair



The closest pair problem

Problem (closest pair): Given n points P, define CP(P) to be the
closest distance, i.e.

CP(P) = ,{‘}}E‘}D”p —q||

Brute force solution: T‘rﬂ M pairs —> O (n z)



* Brute force reuses no information whatsoever

 Geometry problems often have a lot of reusable information!

e Suppose | know the closest pair among the first i points...
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New Question: How do we find the set of points within distance d of
the new point?
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{
* If the grid size is sufficiently large, closest pair will'be irﬁ\same cell, or
in neighboring cells

* If the grid size is too large, there will be too many points per cell...

: Choose the right grid size.
* Want few points per cell, so that looking in a cell is fast
* Want the closest pair to be in neighboring cells so we find them fast



The right grid size

Proof:




Add the points one at a time
 Check neighboring cells to see if there’s a new closest pair
* If so, rebuild the grid with the new size
e Otherwise keep going



Given a grid containing a set of points P, we
want the grid size r to always equal CP(P)

* MakeGrid(p, q): Make a grid containing p and g, withr = ||p — q||

* Lookup(G, p): Given a grid G and point p (not currently in the grid),
we want to know whether p is part of a new closest pair

* Insert(G, p): Given a grid G and point p, inserts p and returns the grid
size (which may have changed because of p)



Implementing the grid

Issue: The number of grid cells could be unbounded...

D a hashible
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Implementing the grid

Implement MakeGrid(p, q):
T = | P9 /
Inserf P & 7 I /MSA%/C

(x9) — (L;—J/L%J) diet 5 Jisk of points



Implementing the grid

Implement Lookup(G, q):
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Implementing the grid

Implement Insert(G, q):

li P, T = /,ocylaup(cj Z) S aet None :
Rebu(lal mj fj”"( M olashmce 48 (%P@M/k)
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Runtime

Proof:

Cost = O Z ) = o(n?)

Randomization to the rescuel!l!
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Randomized runtime

Proof: PL N <P77:;7D7’=a " P"i >

X, = { 1 P CP(P)# CP(P)  (ansier changas)
O O.-W.

“T > é(l + L'Xb)
E[T]) = O(n) + = CPLCPCP)+celr)]
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Randomized runtime (continued)

We need to bound Pr[X; = 1]... (i.e., Pr[CP(P,) % CP(P;_1)])
Cal o pot ¢ ‘enbied " i CP(P\tg3) £ Cr(P;)
< 2 cwhkedd points I
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Smallest enclosing circle



The smallest enclosing circle

Problem (Smallest enclosing circle): Given n = 2 points in two
dimensions, find the smallest circle that contains all of them
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Base cases

Base case (two points):
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Base cases

Base case (three points):

Case 1: Obtuse angle

Case 2: Acute angle
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Three points and a circle




Given n > 3 points, how many circles do we need to consider?

For any set of points, the
smallest enclosing circle either touches two points p;, p; at a

diameter, or touches three points p;, p;, p; forming an acute triangle

For any set of points, there exists i, j, k, such that
SEC(py, -, Pn) = SEC(py, ), Prc)



Proof of theorem

Case 1 (no points):
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Proof of theorem

Case 2 (one point):
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Proof of theorem

Case 3 (two points, not on a diameter):
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Proof of theorem

Case 4 (three points, no acute angle):
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We just proved

 Either two points at a diameter, or

* Three points forming an acute triangle
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Algorithm 1 (brute force): Try all triples of points and find their
smallest enclosing circle. Check whether this circle contains every
point. Returns the smallest such circle.

Algorithm 2 (better brute force): Try all triples of points and find their
smallest enclosing circle. Return the largest such circle.



Insert points one by one and maintain the
smallest enclosing circle

When inserting p;:
* Case 1: p; is inside the current circle. Great, do nothing!

* Case 2: p; is outside the current circle. Need to find the new one



Making incremental fast

Observation: When we add p;, if it is not in the current circle, then it
is on the boundary of the new circle
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SEC([p1, P2, - Pul) = { |
Let C = circle touching p; and p, P ) [

for 1 = 3 to n do {
if p; is not inside C then

. Ik definita
c= SEC ;l:_ ( [P, po poei], }9,;) e F " wuntl%@

¥

return C



Incremental algorithm continued
SEq([pllpZJ""pk]'g_)j{ - Ci : OL%'&”I/@@ o (50“””{43

Let C = circle touching p; and g
for i = 2 to k do { pre 7

if p; is not inside C then P

C = SEC 2_ ([J)’/P"---; P"*'], Pi, CZ,)

¥

return C

}
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Incremental algorithm deeper again

— the bound
SEC2([p1, P2 - i) 01, 02) = { -

Let C = c1rc1e touching ¢g; and g,
for i = 1 to k do { [ 7-
if p; is not inside C then

C= SEC 4 Pa,cf,,ano{ 9. ( base_ cau)

L 4

¥

return C

}
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Runtime




Randomization to the rescue!!!

Thearem => < 3 lonbied poinis”
H>'\'[0\ Fom} 1S C’/I'W/OV(J < 3/5

O(n)

=

ELT])= O+ i)

(1
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Putting it all together

SEC([pl,pz, ;pn]) = {
random_shuffle(p)

SEC: 0(n)

. . T
C = circle touching p; and p, n EXPECtOtIOn..

for 1 = 3 to n do

if p; is not inside C then Pr[entering loop] < 3/1
C = circle touching p; and p;
for j = 2 to 1-1 do

Pr[entering loop] < 3/7
SEC1: 0(D)
in expectation

SEC2: 0(3)
in expectation

return C
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Summary

* Randomized incremental algorithms are pretty great. We can turn
slow brute force algorithms into expected linear-time algorithms!

* We got O(n) expected time for the closest pair and smallest
enclosing circle problems
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