Algorithm
Design and Analysis

Computational Geometry (Incremental Algorithms)

Goals for today

* Apply randomized incremental algorithms to geometry

* Give randomized incremental algorithms for two key problems:
* The closest pair problem
* The smallest enclosing circle problem

Closest Pair

The closest pair problem

Problem (closest pair): Given n points P, define CP(P) to be the
closest distance, i.e.

CP(P) = ,{‘}}E‘}D”p —q||

Brute force solution: T‘rﬂ M pairs —> O (n z)

* Brute force reuses no information whatsoever

 Geometry problems often have a lot of reusable information!

e Suppose | know the closest pair among the first i points...

) — On@ l’lﬁée(l—o
0)] ’ .'/ d""—d& le’Am
0 4[L distance O(

New Question: How do we find the set of points within distance d of
the new point?

Bucked the FomB INo b e
q A cells i '

, —— I e
! [/ /] , o -‘ ‘ ' _ -/ 2rd;..........aé..........aé dé....

| - L
// | S

T
10 Smd/(/“ Ja) 6{3 0 r 2r 3r i

{
* If the grid size is sufficiently large, closest pair will'be irﬁ\same cell, or
in neighboring cells

* If the grid size is too large, there will be too many points per cell...

: Choose the right grid size.
* Want few points per cell, so that looking in a cell is fast
* Want the closest pair to be in neighboring cells so we find them fast

The right grid size

Proof:

Add the points one at a time
 Check neighboring cells to see if there’s a new closest pair
* If so, rebuild the grid with the new size
e Otherwise keep going

Given a grid containing a set of points P, we
want the grid size r to always equal CP(P)

* MakeGrid(p, q): Make a grid containing p and g, withr = ||p — q||

* Lookup(G, p): Given a grid G and point p (not currently in the grid),
we want to know whether p is part of a new closest pair

* Insert(G, p): Given a grid G and point p, inserts p and returns the grid
size (which may have changed because of p)

Implementing the grid

Issue: The number of grid cells could be unbounded...

D a hashible

11

Implementing the grid

Implement MakeGrid(p, q):
T = | P9 /
Inserf P & 7 I /MSA%/C

(x9) — (L;—J/L%J) diet 5 Jisk of points

Implementing the grid

Implement Lookup(G, q):

Sea/rdn n@‘jl’léouﬂﬁj Snd C@ég‘s
< 34 PD/W:S (consdan-})

Jf . p st llp-9ll < r
Tetlum P lp-gif
Tchm None

Implementing the grid

Implement Insert(G, q):

li P, T = /,ocylaup(cj Z) S aet None :
Rebu(lal mj fj”"(M olashmce 48 (%P@M/k)

l
e/Q;m/r 7 e cument q7id (cheap)

Runtime

Proof:

Cost = O Z) = o(n?)

Randomization to the rescuel!l!

15

Randomized runtime

Proof: PL N <P77:;7D7’=a " P"i >

X, = { 1 P CP(P)# CP(P) (ansier changas)
O O.-W.

“T > é(l + L'Xb)
E[T]) = O(n) + = CPLCPCP)+celr)]

16

Randomized runtime (continued)

We need to bound Pr[X; = 1]... (i.e., Pr[CP(P,) % CP(P;_1)])
Cal o pot ¢ ‘enbied " i CP(P\tg3) £ Cr(P;)
< 2 cwhkedd points I
Pr [CP(P) + CP(Pi-)]
=P [pn ks cnhicad | <
ELT] = oln)+ Zc Z <0(n) 5

Smallest enclosing circle

The smallest enclosing circle

Problem (Smallest enclosing circle): Given n = 2 points in two
dimensions, find the smallest circle that contains all of them

19

Base cases

Base case (two points):

20

Base cases

Base case (three points):

Case 1: Obtuse angle

Case 2: Acute angle

21

Three points and a circle

Given n > 3 points, how many circles do we need to consider?

For any set of points, the
smallest enclosing circle either touches two points p;, p; at a

diameter, or touches three points p;, p;, p; forming an acute triangle

For any set of points, there exists i, j, k, such that
SEC(py, -, Pn) = SEC(py,), Prc)

Proof of theorem

Case 1 (no points):

24

Proof of theorem

Case 2 (one point):

25

Proof of theorem

Case 3 (two points, not on a diameter):

26

Proof of theorem

Case 4 (three points, no acute angle):

27

We just proved

 Either two points at a diameter, or

* Three points forming an acute triangle

28

Algorithm 1 (brute force): Try all triples of points and find their
smallest enclosing circle. Check whether this circle contains every
point. Returns the smallest such circle.

Algorithm 2 (better brute force): Try all triples of points and find their
smallest enclosing circle. Return the largest such circle.

Insert points one by one and maintain the
smallest enclosing circle

When inserting p;:
* Case 1: p; is inside the current circle. Great, do nothing!

* Case 2: p; is outside the current circle. Need to find the new one

Making incremental fast

Observation: When we add p;, if it is not in the current circle, then it
is on the boundary of the new circle

31

SEC([p1, P2, - Pul) = { |
Let C = circle touching p; and p, P) [

for 1 = 3 to n do {
if p; is not inside C then

. Ik definita
c= SEC ;l:_ ([P, po poei], }9,;) e F " wuntl%@

¥

return C

Incremental algorithm continued
SEq([pllpZJ""pk]'g_)j{ - Ci : OL%'&”I/@@ o (50“””{43

Let C = circle touching p; and g
for i = 2 to k do { pre 7

if p; is not inside C then P

C = SEC 2_ ([J)’/P"---; P"*'], Pi, CZ,)

¥

return C

}

33

Incremental algorithm deeper again

— the bound
SEC2([p1, P2 - i) 01, 02) = { -

Let C = c1rc1e touching ¢g; and g,
for i = 1 to k do { [7-
if p; is not inside C then

C= SEC 4 Pa,cf,,ano{ 9. (base_ cau)

L 4

¥

return C

}

34

Runtime

Randomization to the rescue!!!

Thearem => < 3 lonbied poinis”
H>'\'[0\ Fom} 1S C’/I'W/OV(J < 3/5

O(n)

=

ELT])= O+ i)

(1

36

Putting it all together

SEC([pl,pz, ;pn]) = {
random_shuffle(p)

SEC: 0(n)

. . T
C = circle touching p; and p, n EXPECtOtIOn..

for 1 = 3 to n do

if p; is not inside C then Pr[entering loop] < 3/1
C = circle touching p; and p;
for j = 2 to 1-1 do

Pr[entering loop] < 3/7
SEC1: 0(D)
in expectation

SEC2: 0(3)
in expectation

return C

37

Summary

* Randomized incremental algorithms are pretty great. We can turn
slow brute force algorithms into expected linear-time algorithms!

* We got O(n) expected time for the closest pair and smallest
enclosing circle problems

38

	Slide 1: Algorithm Design and Analysis
	Slide 2: Goals for today
	Slide 3: Closest Pair
	Slide 4: The closest pair problem
	Slide 5: Improving brute force: incremental
	Slide 6: The problem
	Slide 7: A grid data structure!
	Slide 8: The right grid size
	Slide 9: The incremental approach
	Slide 10: A grid data structure
	Slide 11: Implementing the grid
	Slide 12: Implementing the grid
	Slide 13: Implementing the grid
	Slide 14: Implementing the grid
	Slide 15: Runtime
	Slide 16: Randomized runtime
	Slide 17: Randomized runtime (continued)
	Slide 18: Smallest enclosing circle
	Slide 19: The smallest enclosing circle
	Slide 20: Base cases
	Slide 21: Base cases
	Slide 22: Three points and a circle
	Slide 23: The general case
	Slide 24: Proof of theorem
	Slide 25: Proof of theorem
	Slide 26: Proof of theorem
	Slide 27: Proof of theorem
	Slide 28: We just proved
	Slide 29: Brute force algorithms
	Slide 30: Beating brute force: incremental
	Slide 31: Making incremental fast
	Slide 32: Incremental algorithm
	Slide 33: Incremental algorithm continued
	Slide 34: Incremental algorithm deeper again
	Slide 35: Runtime
	Slide 36: Randomization to the rescue!!!
	Slide 37: Putting it all together
	Slide 38: Summary

