Algorithm
Design and Analysis

Dynamic Programming (Part Il)

Roadmap for today

* More dynamic programming
* Review Longest Increasing Subsequence (LIS) with SegTrees!
* Derive the Floyd-Warshall algorithm for all-pairs shortest paths

* See the Subset DP technique applied to the Travelling Salesperson Problem

2.

3.

4.

6.

Identify a set of optimal subproblems

e Write down a clear and unambiguous definition of the
subproblems.

Identify the relationship between the subproblems

* Write down a recurrence that gives the solution to a problem in
terms of its subproblems

Analyze the required runtime

e Usually (but not always) the number of subproblems multiplied
by the time taken to solve a subproblem.

Select a data structure to store subproblems

e Usually just an array. Occasionally something more complex

Choose between bottom-up or top-down implementation
Write the code!

Longest Increasing
Subsequence

Definition (LIS): Given a sequence of n numbers a4, a,, ..., a,, find
the length of a longest strictly increasing subsequence.

7 0| 4 3 1011 17 15

LIS(i) := The length of the longest increasing subsequence
that ends with element a; (must include a;)

LIS(:) =1+ max LIS(j)
a;<a;

Optimized LIS: SegTree DP!

LIS(%) = 1 + max LIS(j)

A:

SegTree:

J€[0,2)
a;<a;

O 4|3 |10

11

17

15

function LIS(list A):
n = length(A)
results := SegTree(array of n+l 0’s)
sortedByVal := sorted list of (val, index) pairs
for (val, index) in sortedByVal:

return

All-pairs shortest paths

Definition (APSP) Given a directed, weighted graph, compute the
length of the shortest path between every pair of vertices.

Optimal substructure:

Subproblems:

Writing a Recurrence: Attempt 1

SP(u,v,f) =

Analyzing Runtime: Attempt 1

SP(u, v, k) = min(SP(u,v', k — 1) + w(v', v))

v'eVv

Naive analysis: Better analysis:

Definition (APSP) Given a directed, weighted graph, compute the
length of the shortest path between every pair of vertices.

Optimal substructure:

Subproblems:

Writing a Recurrence: Attempt 2

SP(u,v, k) =

Analyzing Runtime: Attempt 2

SP(u, v, k) = min(SP(u,v', k — 1) + w(v', v))

v'eVv

Runtime analysis: What about space?

Optimization: Don’t store solutions to old
values of k. Paths can only stay the same or
get shorter as we add more vertices!

Floyd-Warshall Algorithm

def floydWarshall (graph G) :
SP[u] [v] =

for k in [1, n]:

for u in [1, n]:
for v in [1, n]:

SPlu] [v] =

return SP

Exercise: Prove correctness of the Floyd-Warshall algorithm.

Traveling Salesperson
Problem (TSP)

Definition (TSP): Given a complete, directed, weighted graph, we want to find a minimum-weight
cycle that visits every vertex exactly once (called a “Hamiltonian Cycle”).

Idea 1: Find the minimum weight

cycle on a subgraph with one of the A~6 3 * \ T‘k
vertices removed, then add that X N

\ c
D

vertex somewhere in the cycle.

Issue: No obvious optimal 6
substructure. The optimal cycle for \ !

{A,B,C,D,E} looks very different to E

the optimal cycle for {A,B,C,D}

The issue: Cycles don’t have any obvious optimal substructure

Can we look for another graph property that does?

How do we know which vertex
to put second last (before T)?

S —> A —> B —> C — T s—»c—»s—»@ T
S—>C—>A T

Observe:IfS > A—->B > C > Tis s—> a—> 8 —>(O)—> T

a minimum weight S — T path,

thenS > A > B — C must be a to the rescue!l

minimum weight S — C path. Try them all and take the best one.

* How should we define subproblems for minimum-weight paths?

* How do we solve the original problem (TSP) using these subproblems?

Writing a recurrence

* Now we just need the recurrence for minimum weight paths

(‘

MinPath(S,t) = <

20

Analyzing Runtime

Runtime of naive solution:

DP solution:

21

* Wait, isn’t each subset ®(n) space and therefore takes ®(n) time to
look up? So, we actually need more time and space?

Optimization: Represent subsets as bitsets. Each subset is represented by a
single integer, where the i bit is 1 if and only if the i*" vertex is in the subset.

* Breaking a problem into subproblems is hard.

e Can | use the first k elements of the input?
Can | restrict an integer parameter (e.g., knapsack size) to a smaller value?
On trees, can | solve the problem for each subtree? (Tree DP)

Can | store a subset of the input? (TSP subproblems)
Can | remember the most recent decision? (Previous vertex in TSP)

* Many techniques are useful to a DP algorithm:
e Can | remove redundant subproblems to save space? (Floyd-Warshall)
e Can | use a fancier data structure than an array? (LIS with SegTree)

	Slide 1: Algorithm Design and Analysis
	Slide 2: Roadmap for today
	Slide 3: “Recipe” for dynamic programming
	Slide 4: Longest Increasing Subsequence
	Slide 5: Review of LIS (SegTree DP)
	Slide 6: Optimized LIS: SegTree DP!
	Slide 7: Optimized LIS: Pseudocode
	Slide 8: All-pairs shortest paths
	Slide 9: All-pairs shortest paths: Attempt 1
	Slide 10: Writing a Recurrence: Attempt 1
	Slide 11: Analyzing Runtime: Attempt 1
	Slide 12: All-pairs shortest paths: Attempt 2
	Slide 13: Writing a Recurrence: Attempt 2
	Slide 14: Analyzing Runtime: Attempt 2
	Slide 15: Floyd-Warshall Algorithm
	Slide 16: Traveling Salesperson Problem (TSP)
	Slide 17: Traveling Salesperson Problem (TSP)
	Slide 18: Refining the Subproblems
	Slide 19: Defining Subproblems
	Slide 20: Writing a recurrence
	Slide 21: Analyzing Runtime
	Slide 22: Subset DP: Representing subsets
	Slide 23: Take-home messages

