Algorithm Design and Analysis

Dynamic Programming (Part II)

Roadmap for today

- More dynamic programming
- Review Longest Increasing Subsequence (LIS) with SegTrees!
- Derive the Floyd-Warshall algorithm for all-pairs shortest paths
- See the Subset DP technique applied to the Travelling Salesperson Problem

"Recipe" for dynamic programming

1. Identify a set of optimal subproblems

 Write down a clear and unambiguous definition of the subproblems.

2. Identify the relationship between the subproblems

 Write down a recurrence that gives the solution to a problem in terms of its subproblems

3. Analyze the required runtime

• *Usually* (but not always) the number of subproblems multiplied by the time taken to solve a subproblem.

4. Select a data structure to store subproblems

- *Usually* just an array. Occasionally something more complex
- 5. Choose between bottom-up or top-down implementation
- 6. Write the code!

Often all that is required for a theoretical solution

Only required if the answer is not "array"

Mostly ignored in this class (unless it's a programming HW!)

Longest Increasing Subsequence

Review of LIS (SegTree DP)

Definition (LIS): Given a sequence of n numbers $a_1, a_2, ..., a_n$, find the length of a <u>longest strictly increasing subsequence</u>.

Subproblems:

LIS(i) := The length of the longest increasing subsequence that ends with element a_i (must include a_i)

Recurrence:
$$LIS(i) = 1 + \max_{\substack{j \in [0,i) \\ a_i < a_i}} LIS(j)$$

Optimized LIS: SegTree DP!

$$LIS(i) = 1 + \max_{\substack{j \in [0,i) \\ a_j < a_i}} LIS(j)$$

Optimized LIS: Pseudocode

```
function LIS(list A):
    n = length(A)
    results := SegTree(array of n+1 0's)
    sortedByVal := sorted list of (val, index) pairs
    for (val, index) in sortedByVal:
```

return

All-pairs shortest paths

All-pairs shortest paths: Attempt 1

Definition (APSP) Given a directed, weighted graph, compute the length of the shortest path between <u>every pair</u> of vertices.

Optimal substructure:

Subproblems:

Writing a Recurrence: Attempt 1

$$SP(u, v, \ell) = \begin{cases} \\ \\ \end{cases}$$

Analyzing Runtime: Attempt 1

$$SP(u, v, k) = \min_{v' \in V} (SP(u, v', k - 1) + w(v', v))$$

Naïve analysis:

Better analysis:

All-pairs shortest paths: Attempt 2

Definition (APSP) Given a directed, weighted graph, compute the length of the shortest path between <u>every pair</u> of vertices.

Optimal substructure:

Subproblems:

Writing a Recurrence: Attempt 2

$$SP(u, v, k) = \begin{cases} \\ \\ \end{cases}$$

Analyzing Runtime: Attempt 2

$$SP(u, v, k) = \min_{v' \in V} (SP(u, v', k - 1) + w(v', v))$$

Runtime analysis:

What about space?

Optimization: Don't store solutions to old values of k. Paths can only stay the same or get shorter as we add more vertices!

Floyd-Warshall Algorithm

```
def floydWarshall(graph G):
    SP[u][v] =

    for k in [1, n]:
        for u in [1, n]:
            for v in [1, n]:
                 SP[u][v] =
    return SP
```

Exercise: Prove correctness of the Floyd-Warshall algorithm.

Traveling Salesperson Problem (TSP)

Traveling Salesperson Problem (TSP)

Definition (TSP): Given a complete, directed, weighted graph, we want to find a minimum-weight cycle that visits every vertex exactly once (called a "Hamiltonian Cycle").

Idea 1: Find the minimum weight cycle on a subgraph with one of the vertices removed, then add that vertex somewhere in the cycle.

Issue: No obvious optimal substructure. The optimal cycle for {A,B,C,D,E} looks very different to the optimal cycle for {A,B,C,D}

Refining the Subproblems

The issue: Cycles don't have any obvious optimal substructure

Can we look for another graph property that does?

Paths!

Observe: If $S \to A \to B \to C \to T$ is a minimum weight $S \to T$ path, then $S \to A \to B \to C$ must be a minimum weight $S \to C$ path.

How do we know which vertex to put second last (before T)?

Clever brute force to the rescue! Try them all and take the best one.

Defining Subproblems

How should we define subproblems for minimum-weight paths?

• How do we solve the original problem (TSP) using these subproblems?

Writing a recurrence

Now we just need the recurrence for minimum weight paths

$$MinPath(S,t) = \left\{$$

Analyzing Runtime

Runtime of naïve solution:

DP solution:

Subset DP: Representing subsets

• Wait, isn't each subset $\Theta(n)$ space and therefore takes $\Theta(n)$ time to look up? So, we actually need more time and space?

Optimization: Represent subsets as *bitsets*. Each subset is represented by a single integer, where the i^{th} bit is 1 if and only if the i^{th} vertex is in the subset.

Take-home messages

- Breaking a problem into subproblems is hard. Common patterns:
 - Can I use the <u>first k elements</u> of the input?
 - Can I restrict an integer parameter (e.g., knapsack size) to a smaller value?
 - On trees, can I solve the problem for each subtree? (Tree DP)
 - Can I store a <u>subset</u> of the input? (TSP subproblems)
 - Can I remember the most recent decision? (Previous vertex in TSP)
- Many techniques are useful to optimize a DP algorithm:
 - Can I remove redundant subproblems to save space? (Floyd-Warshall)
 - Can I use a <u>fancier data structure</u> than an array? (LIS with SegTree)