Algorithm
Design and Analysis

Dynamic Programming

Roadmap for today

* Learn about (maybe review) dynamic programming

* Understand the key elements:

* Memoization
* Optimal Substructure

* Overlapping subproblems

* Practice a lot of DP problems!

You can climb up the stairs in increments of 1 or 2 steps.
How many ways are there to jump up n stairs?

Could we solve this problem in terms of ?
— n-)
Hway S lo cdmb n-1 /’/
4 #waﬂs o clmb n-2 n-2

’2-/

function stairs(int n) {
if (n <= 1) then return 1
else {
let waysToTakelStep = stairs(n-1)
let waysToTake2Steps = stairs(n-2)
return waysToTakelStep + waysToTake2Steps

Issue? Exponentially many recursive calls!!

dictionary<int, int>

—————

function stairs(int n) {
if (n <= 1) then return 1

if (n not in) o

memo [n) = stairs(n-1)
} tstairs (n-2)
return [n]

Key Idea:
Don’t solve the same problem
twice! Store the result and reuse it!

Note:
The memo dictionary does not
need to be a hashtable! What
should it be in this case?

* We could solve the stairs problem by using solutions to smaller
instances of the stairs problem

stairs(n) = stairs(n-1) + stairs(n-2)

Key Idea:
We say that a problem has optimal substructure if the optimal
solution to the problem can be derived from optimal solutions
to smaller instances (called) of the problem.

* The DP implementation of stairs was faster because each subproblem
was solved only once instead of exponentially many times

stairs(n) = stairs(n-1) + stairs(n-2)

Key Idea:
Overlapping subproblems are subproblems that occur multiple
(often exponentially many) times throughout the recursion tree.
This is what distinguishes DP from ordinary recursion.

2.

3.

4.

6.

Identify a set of optimal subproblems

e Write down a clear and unambiguous definition of the
subproblems.

Identify the relationship between the subproblems

* Write down a recurrence that gives the solution to a problem in
terms of its subproblems

Analyze the required runtime

e Usually (but not always) the number of subproblems multiplied
by the time taken to solve a subproblem.

Select a data structure to store subproblems
e Usually just an array. Occasionally something more complex

Choose between bottom-up or top-down implementation
Write the code!

The Knapsack Problem

Definition (Knapsack): Given a set of n items, the i'" of which has
size s; and value v;. The goal is to find a subset of the items whose
total size is at most S, with maximum possible value.

O
Ul

Value | 7 12 15| 6 | 12 S =15
Size | 3| 4| 2|6 | 7| 3|5

Value 7 12 | 15 6 12

O
Ul

Size 3|4 | 2 6 / 3 5

Issue:

* How do we know whether to include a
particular object X?

* We don’t know in advance, so
and pick best one!

Optimal substructure:

* Every object is either included or
not included

e If anitem X is included, the
remaining S — Size(X) space is filled
with some subset of the remaining
items

* This is just a smaller instance of the
knapsack problem!!

{ V (k,B):=

Valw of fest subset o flok3 ik
size ot mos— (K

g O S k=0
V(k,B) =< \/(k_)/ B) lf Dk > B

mOkX(\/(h-f, B-Sk)Jch V(k-1, E)>
L /

Key Idea:
We could not know in advance whether to include the i item or
not, so we tried both possibilities and took the best one.

Analyzing the Runtime

Analysis: Knapsack can be solved in O(nS) time

(n) = (s+1) swéf'rvacms
O () per subprblen

5 O(hS) Lime

Max-weight independent set
in a tree (Tree DP)

Definition (Independent set): Given a tree on n vertices, an independent set is a subset of the
vertices S € V such that none of them are adjacent.

Each vertex has a non-negative weight w,,, and we want to find the maximum possible weight
independent set.

Optimal substructure:

e A solution either includes the root or does not include the root

* If theroot is chosen, the remaining solution is an independent
set of the remaining vertices, excluding the root’s children

* Each child/grandchild subtree is just another smaller instance of
the MWIS-in-a-tree problem!!

W(v):= valw.aj MwiS o the Subtree 1001 at

4 S W(w) (don+ use U‘)

W€ Chld(v)

W (v) = max <
2 W(n) + W (/l/LC@ V)

we G

\-

Again:
We could not know in advance whether to include the root or not,
so we tried both possibilities and took the best one!

Analyzing the Runtime

Theorem: MWIS on a tree can be solved in O(n)!!

N Subproblems o
wovsd‘ -case OCn) Hme fo Solre S%F‘rOé(Q,M reﬁlmt.sho

O(o\eﬁrc.e/) o solie o Swbproblem
So(n) tne In fotd

Longest Increasing
Subsequence

Longest Increasing Subsequence

Definition (LIS): Given a sequence of n numbers a4, a,, ..., a,, find
the length of a longest strictly increasing subsequence.

* Note: A subsequence does not have to be contiguous

S

-l
-~ I

7 |(0) 4 @(@ 11|17 (15

Defining Subproblems

70|43 |10 1117 @
Optimal substructure:
* An LIS ending with the element 15 extends the LIS that...

—ena(l_o{ ‘ejov-c FOSHWP\ (S <
itk Velwe mat Be less Han 15 <—

N (emOH\o;f LIS ending wth A
L Cis (0= TP nelide @,)

20

Writing a Recurrence

LIS() = <

Answer: MOX LIS(‘;)
L

21

LIS(3) = 1+ max LIS(j)
a;<a;

* Naive runtime: () (n 7_)

e Can we do better?

* This recurrence is taking the

* Do we know a way to do this more efficiently?? SCﬁw

Optimized LIS: SegTree DP!

LIS(9) = 1+ max LIS()
a; <&i

A7 10 4 3 10,11 17 | 15

SegTree:

’ro (76, (,Omlinueol on ﬂtegolﬂzj

function LIS(list A):
n = length(A)
results := SegTree(array of n+l 0’s)
sortedByVal := sorted list of (val, index) pairs
for (val, index) in sortedByVal:

return

* Breaking a problem into subproblems is hard.

Can | use the first k elements of the input?

Can | restrict an integer parameter (e.g., knapsack size) to a smaller value?
On trees, can | solve the problem for each subtree? (Tree DP)

Can | solve the problem for a subset of the input ()

Can | keep track of more information ()

e Trya“ ¥ approach.
* Make one decision at a time and recurse, then take the best thing that results.
* Can think of this as memoized backtracking

e Can | use a clever data structure to speed up the recurrence (SegTree DP!)

* Complexity analysis is often just subproblems X time per subproblem
* But sometimes its harder and we must do some more analysis

	Slide 1: Algorithm Design and Analysis
	Slide 2: Roadmap for today
	Slide 3: Starter example: Counting steps
	Slide 4: Implementation #1
	Slide 5: Implementation #2
	Slide 6: When can we use DP?
	Slide 7: When can we use DP?
	Slide 8: “Recipe” for dynamic programming
	Slide 9: The Knapsack Problem
	Slide 10: The Knapsack Problem
	Slide 11: Identifying Optimal Substructure
	Slide 12: Writing a recurrence
	Slide 13: Analyzing the Runtime
	Slide 14: Max-weight independent set in a tree (Tree DP)
	Slide 15: Independent sets on trees (Tree DP)
	Slide 16: Writing a Recurrence
	Slide 17: Analyzing the Runtime
	Slide 18: Longest Increasing Subsequence
	Slide 19: Longest Increasing Subsequence
	Slide 20: Defining Subproblems
	Slide 21: Writing a Recurrence
	Slide 22: Analyzing Runtime
	Slide 23: Optimized LIS: SegTree DP!
	Slide 24: Optimized LIS: Pseudocode
	Slide 25: Take-home messages

