# Algorithm Design and Analysis

Range Query Data Structures

#### Roadmap for today

- Understand the range query problem
- Learn about the SegTree™ data structure for range queries
- See how to apply range queries to speed up other algorithms

#### The range query problem

**Given:** An array  $a_0$ ,  $a_1$ , ...,  $a_{n-1}$ 

Queries: Given an interval [i,j), need to answer queries about  $a_i, ..., a_{j-1}$ 

**Example (Range sum queries):** Given an array  $a_0, ..., a_{n-1}$ , need to answer queries for the sum of a range [i, j), i.e,

$$\sum_{i \le k < j} a_k$$

## **Algorithms**

**Algorithm 1 (Just do it):** Do no precomputation, given a query, just compute the sum by looping over the range.

| Preprocessing time | Query time |  |
|--------------------|------------|--|
| 0                  | O(n)       |  |

**Algorithm 2 (Prefix sums):** Compute prefix sums  $p_j = \sum_{i < j} a_i$ . A query [i,j) is answered by returning  $p_j - p_i$ 

| Preprocessing time | Query time |  |
|--------------------|------------|--|
| O(n)               | 0(1)       |  |

#### Let's make it more interesting

*Updates*: We also want to support update operations:

• Assign(i, x): Set  $a_i \leftarrow x$ 

• RangeSum
$$(i,j)$$
: Return  $\sum_{i \le k < j} a_k$ 

|             | Preprocessing time | Update time | Query time |
|-------------|--------------------|-------------|------------|
| Just do it  | 0                  | 0(1)        | D (n)      |
| Prefix sums | $O(\nu)$           | O(n)        | O(1)       |

#### Why are the updates slow?



- Updating a single value might cause O(n) dependent values to change
- Big idea: Can we compute the sums with fewer dependencies
- If you've taken 15-210, this might remind you of something...

#### Divide-and-conquer summation



#### **Analysis of Assign**

**Theorem:** Assign(i, x) can be implemented in  $O(\log n)$  time



## Queries (RangeSum)



**Theorem:** RangeSum(i, j) can be implemented in  $O(\log n)$ 

**Case 1:** The interval we're looking for is entirely contained in one half of the current node



Only one recursive call!

**Theorem:** RangeSum(i, j) can be implemented in  $O(\log n)$ 

Case 2: The interval we're looking for is split across both halves



Two recursive calls...

Claim: We only need two recursive calls once!

**Theorem:** RangeSum(i, j) can be implemented in  $O(\log n)$ 

Claim: We only need two recursive calls once!

Each recursive call wants a prefix or suffix of the node



- The prefix is entirely in the left half
- Only one recursive call!



- The prefix stretches into the right half
- The sum is the entire left half + a recursive call on the right half
- Only one recursive call!

**Theorem:** RangeSum(i, j) can be implemented in  $O(\log n)$ 

Proof: We just argued that the recursion tree looks like...



# **Applications**

## Speeding up algorithms

## 12534

**Problem (Inversion count):** Given a permutation  $p_0, p_1, ..., p_{n-1}$  (of the integers 0 ... n-1), an inversion is a pair  $p_i, p_j$  such that i < j but  $p_i > p_j$ . The problem is to count the number of inversions in a sequence.

#### Slow Algorithm:

```
for i in [0, ..., n-1]:
   for j in [i+1, ..., n-1]:
     if P[i] > P[j]: count++
```

```
for i in [0, ..., n-1]:

count how many P[j]'s in the

interval [i+1, n-1] are < P[i]
```

These sound like range queries???

#### **Faster Inversion Count**

How can we use SegTrees to speed up our algorithm?



The SegTree will store **indicator variables**, 1 means we have seen that element before, 0 means we have not. RangeSum = count

#### **Faster Inversion Count: Code**

```
function inversionCount(A : int list) {
    counts := SegTree([0] * len(A))
    invCount := 0
    for i in [n-1, n-2, ..., 0] {
       InvCount += counk. Range Sum (O, A[i]) (log n)
Counts. Assign (A[i], 1)
                                                     O(logn)
    return invCount
                                       O(n logn)
```

# Implementation

#### Data structure implementation

Remember binary heaps? Their structure is super useful!

#### Quick refresher:

- The root node is 0
- The left child of i is 2i + 1
- The right child of i is 2i + 2



- Let's also use this for range queries This will be called a SegTree™
- We will assume that n is a power of two for simplicity

#### Construction

```
class SegTree {
  nodes : Node list
  n : int }
class Node {
 val : int
  leftIdx : int
  rightIdx : int }
function left(u) {
  return 2*u+1; }
function right (u) {
  return 2*u+2; }
```

```
constructor (A : int list) {
                                   Assumes
his powof 2
  n = A.length
  nodes = [None] * (2*n − 1) ←
  # Fill in the leaves
                                      exclusive
  for i in [0, ..., n-1]
    nodes[i+(n-1)] = Node(A[i], i, i+1)
  # Fill in the rest of the tree
  for i in [n-2, n-3, ..., 0] {
     lest Node = nodes [lest(i)]
    nghe Node = rocks [nght (i)]
     nodes [i] = Node (lept Node out +
                     rght Node. vel,
lest Node. lest 1 dx
}}
```

## Assign

```
class SegTree {
# Assign value x to position i
                                                    nodes : Node list
function assign(i, x) {
                                                    n : int }
   nodeIdx = i + n - 1
   nodes[nodeIdx].val = x
   while nodeIdx > 0 {
                                                  class Node {
       nodeldx = pareur (nodeldx)
                                                    val : int
                                                    leftIdx : int
       node = nodes [node ldx]
                                                    rightIdx : int }
       node val = nodes [left (nodeldx)] val
                 + nodes [right (nodeldi)] val
                                                  function parent(u) {
                                                    return (u - 1) // 2 }
```

#### Range Query

```
function sum(nodeIdx : int, i : int, j : int) {
 node = nodes[nodeIdx]
  if (i == node.leftIdx and node.rightIdx == j)
   return node val
         (node.leftldx + node.rightldx)//2
      mid := (L + R) / 2;
     if (i >= mid) return Sum (right (nodeldx), i,j)
     else if (j <= mid) return sum (left (nodeldx), i, i)
      else {
         return sum (left (nodeldx), i, mid)
                                                     function RangeSum(i, j) {
             + Sum (node ldx), mid , j)
                                                       return sum(0, i, j);
      }}}
```

#### **Extensions of SegTrees**

#### Reducing over other associative operations!

- + can be replaced with any binary associative operator, e.g., min, max
- Examples await you in recitation
- Just change the code in **constructor**, **Assign**, and **sum**
- Replace the + with your favourite associative operator!

#### Summary

- SegTrees allow us to implement dynamic range queries in  $O(\log n)$ 
  - Assign/Update in  $O(\log n)$
  - RangeSum in  $O(\log n)$
- SegTrees are useful for **speeding up algorithms** that require summing over a range of elements
  - E.g., speeding up inversion counting from  $O(n^2)$  to  $O(n \log n)$
- We can implement a SegTree with any associative operation
  - Plus/RangeSum, min/max, even fancier operations!
  - See recitation!