
Algorithm
Design and Analysis

Range Query Data Structures

1

Roadmap for today

• Understand the range query problem

• Learn about the SegTree data structure for range queries

• See how to apply range queries to speed up other algorithms

2

The range query problem

Example (Range sum queries): Given an array 𝑎0, … , 𝑎𝑛−1, need to
answer queries for the sum of a range [𝑖, 𝑗), i.e,

3

Given: An array 𝑎0, 𝑎1, … , 𝑎𝑛−1

Queries: Given an interval [𝑖, 𝑗), need to answer queries about 𝑎𝑖 , … , 𝑎𝑗−1

Algorithms

Algorithm 1 (Just do it): Do no precomputation, given a query, just
compute the sum by looping over the range.

Preprocessing time Query time

Algorithm 2 (Prefix sums): Compute prefix sums 𝑝𝑗 = . A query
[𝑖, 𝑗) is answered by returning 𝑝𝑗 − 𝑝𝑖

Preprocessing time Query time

4

Let’s make it more interesting

Updates: We also want to support update operations:

• Assign(𝑖, 𝑥): Set 𝑎𝑖 ← 𝑥

• RangeSum(𝑖, 𝑗): Return

Preprocessing time Update time Query time

Just do it

Prefix sums

5

Why are the updates slow?

• Updating a single value might cause 𝑂(𝑛) dependent values to change

• Big idea: Can we compute the sums with fewer dependencies

• If you’ve taken 15-210, this might remind you of something…

3 1 10 8 4 5 9 2
0 1 2 3 4 5 6 7

𝒂

𝑖

𝒑 0 3 4 14 22 26 31 40 42

6

Divide-and-conquer summation

7

Analysis of Assign

8

Theorem: Assign(𝑖, 𝑥) can be implemented in 𝑂(log 𝑛) time

Queries (RangeSum)

9

Analysis of RangeSum

Case 1: The interval we're looking for is entirely contained in one half of
the current node

10

Theorem: RangeSum(𝑖, 𝑗) can be implemented in 𝑂(log 𝑛)

Only one recursive call!

Analysis of RangeSum

Case 2: The interval we're looking for is split across both halves

11

Theorem: RangeSum(𝑖, 𝑗) can be implemented in 𝑂(log 𝑛)

Two recursive calls…

Claim: We only need two recursive calls once!

Analysis of RangeSum

Claim: We only need two recursive calls once!

Each recursive call wants a prefix or suffix of the node

12

Theorem: RangeSum(𝑖, 𝑗) can be implemented in 𝑂(log 𝑛)

• The prefix is entirely in the left half
• Only one recursive call!

• The prefix stretches into the right half
• The sum is the entire left half + a

recursive call on the right half
• Only one recursive call!

Analysis of RangeSum

Proof: We just argued that the recursion tree looks like…

13

Theorem: RangeSum(𝑖, 𝑗) can be implemented in 𝑂(log 𝑛)

Applications

14

Speeding up algorithms

Slow Algorithm:

for i in [0, …, n-1]:
 for j in [i+1, …, n-1]:
 if P[i] > P[j]: count++

These sound like range queries???

15

Problem (Inversion count): Given a permutation 𝑝0, 𝑝1, … , 𝑝𝑛−1 (of the integers
0 … 𝑛 − 1), an inversion is a pair 𝑝𝑖 , 𝑝𝑗 such that 𝒊 < 𝒋 but 𝒑𝒊 > 𝒑𝒋. The problem

is to count the number of inversions in a sequence.

for i in [0, …, n-1]:
 count how many P[j]'s in the
 interval [i+1, n-1] are < P[i]

Faster Inversion Count

• How can we use SegTrees to speed up our algorithm?

16

4 1 3 0 6 2 5𝑷 =

Idea: Make this into a range query:

count how many P[j]'s are < P[i]

SegTree =

The SegTree will store indicator variables, 1 means we have seen that
element before, 0 means we have not. RangeSum = count

Faster Inversion Count: Code

function inversionCount(A : int list) {

 counts := SegTree([0] * len(A))
 invCount := 0

 for i in __________________ {

 }
 return invCount

}

17

Implementation

18

Data structure implementation

• Remember binary heaps? Their structure is super useful!

Quick refresher:

• The root node is 0

• The left child of 𝑖 is 2𝑖 + 1

• The right child of 𝑖 is 2𝑖 + 2

• Let’s also use this for range queries – This will be called a SegTree

• We will assume that 𝑛 is a power of two for simplicity
19

Construction

class SegTree {
 nodes : Node list
 n : int }

class Node {
 val : int
 leftIdx : int
 rightIdx : int }

function left(u) {
 return 2*u+1; }

function right (u) {
 return 2*u+2; }

constructor (A : int list) {
 n = A.length
 nodes = [None] * (2*n – 1)

 # Fill in the leaves
 for i in [0, …, n-1]
 nodes[i+(n-1)] = Node(A[i], i, i+1)

 # Fill in the rest of the tree
 for i in [n-2, n-3, …, 0] {

}}

20

Assign

Assign value x to position i
function assign(i, x) {
 nodeIdx = i + n – 1
 nodes[nodeIdx].val = x
 while nodeIdx > 0 {

 }
}

21

class SegTree {
 nodes : Node list
 n : int }

class Node {
 val : int
 leftIdx : int
 rightIdx : int }

function parent(u) {

 return (u – 1) // 2 }

Range Query
function sum(nodeIdx : int, i : int, j : int) {

 node = nodes[nodeIdx]
 if (i == node.leftIdx and node.rightIdx == j)

 return

function RangeSum(i, j) {
 return sum(0, i, j);
}

𝒊 𝒋

22

else {

 mid := (L + R) / 2;

 if (i >= mid) return

else if (j <= mid) return

else {

}}}

Extensions of SegTrees

• Just change the code in constructor, Assign, and sum

• Replace the + with your favourite associative operator!

23

Reducing over other associative operations!
• + can be replaced with any binary associative operator, e.g., min, max
• Examples await you in recitation

return sum(left(nodeIdx), i, mid) +
 sum(right(nodeIdx), mid, j)

return max(sum(left(nodeIdx), i, mid),
 sum(right(nodeIdx), mid, j))

Summary

• SegTrees allow us to implement dynamic range queries in 𝑂(log 𝑛)
• Assign/Update in 𝑂 log 𝑛

• RangeSum in 𝑂(log 𝑛)

• SegTrees are useful for speeding up algorithms that require summing
over a range of elements
• E.g., speeding up inversion counting from 𝑂 𝑛2 to 𝑂 𝑛 log 𝑛

• We can implement a SegTree with any associative operation
• Plus/RangeSum, min/max, even fancier operations!

• See recitation!

24

	Slide 1: Algorithm Design and Analysis
	Slide 2: Roadmap for today
	Slide 3: The range query problem
	Slide 4: Algorithms
	Slide 5: Let’s make it more interesting
	Slide 6: Why are the updates slow?
	Slide 7: Divide-and-conquer summation
	Slide 8: Analysis of Assign
	Slide 9: Queries (RangeSum)
	Slide 10: Analysis of RangeSum
	Slide 11: Analysis of RangeSum
	Slide 12: Analysis of RangeSum
	Slide 13: Analysis of RangeSum
	Slide 14: Applications
	Slide 15: Speeding up algorithms
	Slide 16: Faster Inversion Count
	Slide 17: Faster Inversion Count: Code
	Slide 18: Implementation
	Slide 19: Data structure implementation
	Slide 20: Construction
	Slide 21: Assign
	Slide 22: Range Query
	Slide 23: Extensions of SegTrees
	Slide 24: Summary

