
Algorithm
Design and Analysis

Range Query Data Structures
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Roadmap for today

• Understand the range query problem

• Learn about the SegTree  data structure for range queries

• See how to apply range queries to speed up other algorithms
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The range query problem

Example (Range sum queries): Given an array 𝑎0, … , 𝑎𝑛−1, need to 
answer queries for the sum of a range [𝑖, 𝑗), i.e,
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Given: An array 𝑎0, 𝑎1, … , 𝑎𝑛−1

Queries: Given an interval [𝑖, 𝑗), need to answer queries about 𝑎𝑖 , … , 𝑎𝑗−1



Algorithms

Algorithm 1 (Just do it):  Do no precomputation, given a query, just 
compute the sum by looping over the range.

Preprocessing time Query time

Algorithm 2 (Prefix sums):  Compute prefix sums 𝑝𝑗 = . A query 
[𝑖, 𝑗) is answered by returning 𝑝𝑗 − 𝑝𝑖

Preprocessing time Query time
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Let’s make it more interesting

Updates:  We also want to support update operations:

• Assign(𝑖, 𝑥):  Set 𝑎𝑖 ← 𝑥

• RangeSum(𝑖, 𝑗):  Return

Preprocessing time Update time Query time

Just do it

Prefix sums
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Why are the updates slow?

• Updating a single value might cause 𝑂(𝑛) dependent values to change

• Big idea:  Can we compute the sums with fewer dependencies

• If you’ve taken 15-210, this might remind you of something…

3 1 10 8 4 5 9 2
0 1 2 3 4 5 6 7

𝒂

𝑖

𝒑 0 3 4 14 22 26 31 40 42
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Divide-and-conquer summation
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Analysis of Assign
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Theorem: Assign(𝑖, 𝑥) can be implemented in 𝑂(log 𝑛) time



Queries (RangeSum)
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Analysis of RangeSum

Case 1:  The interval we're looking for is entirely contained in one half of 
the current node
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Theorem: RangeSum(𝑖, 𝑗) can be implemented in 𝑂(log 𝑛)

Only one recursive call!



Analysis of RangeSum

Case 2:  The interval we're looking for is split across both halves
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Theorem: RangeSum(𝑖, 𝑗) can be implemented in 𝑂(log 𝑛)

Two recursive calls…

Claim: We only need two recursive calls once!



Analysis of RangeSum

Claim: We only need two recursive calls once!

Each recursive call wants a prefix or suffix of the node
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Theorem: RangeSum(𝑖, 𝑗) can be implemented in 𝑂(log 𝑛)

• The prefix is entirely in the left half
• Only one recursive call!

• The prefix stretches into the right half
• The sum is the entire left half + a 

recursive call on the right half
• Only one recursive call!



Analysis of RangeSum

Proof: We just argued that the recursion tree looks like…
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Theorem: RangeSum(𝑖, 𝑗) can be implemented in 𝑂(log 𝑛)



Applications
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Speeding up algorithms

Slow Algorithm:

for i in [0, …, n-1]:
  for j in [i+1, …, n-1]:
    if P[i] > P[j]: count++

These sound like range queries???
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Problem (Inversion count):  Given a permutation 𝑝0, 𝑝1, … , 𝑝𝑛−1 (of the integers 
0 … 𝑛 − 1), an inversion is a pair 𝑝𝑖 , 𝑝𝑗 such that 𝒊 < 𝒋 but 𝒑𝒊 > 𝒑𝒋. The problem 

is to count the number of inversions in a sequence.

for i in [0, …, n-1]:
  count how many P[j]'s in the
  interval [i+1, n-1] are < P[i]



Faster Inversion Count

• How can we use SegTrees to speed up our algorithm?
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4 1 3 0 6 2 5𝑷 =

Idea: Make this into a range query:

count how many P[j]'s are < P[i]

SegTree =

The SegTree will store indicator variables, 1 means we have seen that 
element before, 0 means we have not. RangeSum = count



Faster Inversion Count: Code

function inversionCount(A : int list) {

    counts := SegTree([0] * len(A))
    invCount := 0

    for i in __________________ {

    }
    return invCount

}
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Implementation
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Data structure implementation

• Remember binary heaps?  Their structure is super useful!

Quick refresher:

• The root node is 0

• The left child of 𝑖 is 2𝑖 + 1

• The right child of 𝑖 is 2𝑖 + 2

• Let’s also use this for range queries – This will be called a SegTree

• We will assume that 𝑛 is a power of two for simplicity
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Construction

class SegTree {
  nodes : Node list
  n : int }

class Node {
  val : int
  leftIdx : int
  rightIdx : int }

function left(u) {
  return 2*u+1; }

function right (u) {
  return 2*u+2; }

constructor (A : int list) {
  n = A.length
  nodes = [None] * (2*n – 1)

  # Fill in the leaves
  for i in [0, …, n-1]
    nodes[i+(n-1)] = Node(A[i], i, i+1)

  # Fill in the rest of the tree
  for i in [n-2, n-3, …, 0] {

}}
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Assign

# Assign value x to position i
function assign(i, x) {
    nodeIdx = i + n – 1
    nodes[nodeIdx].val = x
    while nodeIdx > 0 {

    }
}
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class SegTree {
  nodes : Node list
  n : int }

class Node {
  val : int
  leftIdx : int
  rightIdx : int }

function parent(u) {

  return (u – 1) // 2 }



Range Query
function sum(nodeIdx : int, i : int, j : int) {

  node = nodes[nodeIdx]
  if (i == node.leftIdx and node.rightIdx == j)

    return

function RangeSum(i, j) {
  return sum(0, i, j);
}

𝒊 𝒋
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else {

    mid := (L + R) / 2;

    if (i >= mid) return

else if (j <= mid) return

else {

}}}



Extensions of SegTrees

• Just change the code in constructor, Assign, and sum

• Replace the + with your favourite associative operator!
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Reducing over other associative operations!
• + can be replaced with any binary associative operator, e.g., min, max
• Examples await you in recitation

return sum(left(nodeIdx), i, mid) +
       sum(right(nodeIdx), mid, j)

return max(sum(left(nodeIdx), i, mid),
           sum(right(nodeIdx), mid, j))



Summary

• SegTrees allow us to implement dynamic range queries in 𝑂(log 𝑛)
• Assign/Update in 𝑂 log 𝑛

• RangeSum in 𝑂(log 𝑛)

• SegTrees are useful for speeding up algorithms that require summing 
over a range of elements
• E.g., speeding up inversion counting from 𝑂 𝑛2  to 𝑂 𝑛 log 𝑛

• We can implement a SegTree with any associative operation
• Plus/RangeSum, min/max, even fancier operations!

• See recitation!
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