Algorithm
Design and Analysis

Range Query Data Structures

Roadmap for today

* Understand the range query problem
* Learn about the SegTree™ data structure for range queries

* See how to apply range queries to speed up other algorithms

Given: An array ag, a4, ..., Ay _1
Queries: Given an interval [i, j), need to answer queries about a;, ..., aj_4

Example (Range sum queries): Given an array ay, ..., ,_1, nheed to
answer queries for the sum of a range [i,), i.e,

2 o

i<k<j

Algorithms

Algorithm 1 (Just do it): Do no precomputation, given a query, just
compute the sum by looping over the range.

O o(n)

Algorithm 2 (Prefix sums): Compute prefix sums p; = Z a; . A query
[i,j) is answered by returning p; — p; i<j

O(n) 01

Let’s make it more interesting

Updates: We also want to support update operations:
* Assign(i,x): Seta; «< x
* RangeSum(i, j): Return)~ g,

1<k<y
| |Preprocessingtime | Updatetime | Querytime
Just do it O o (1) D (n)

Prefix sums O(n) O Cr\) O U)

Why are the updates slow?

NN\
p 0 3 4 14 22 26 31 40 42

////////

a 3 1 10 8 4 5 9
in-nnnﬂn-

* Updating a single value might cause O(n) dependent values to change

* Big idea: Can we compute the sums with fewer dependencies

* If you've taken 15-210, this might remind you of something...

Divide-and-conquer summation

+2_
/\
27 20
N N

s | ¥ 9 |
7N\ 7N\ 7N\ 7N\
a 3 1 10 8 4 5 9 2

i [N N N T N N

Analysis of Assign

Theorem: Assign(i, x) can be implemented in O(log n) time

33

/\
22 A

4 18 g 11
/N /N /N VN
a 3 1 10 8 4 1 9 2

i [I N N N N N

Queries (RangeSum)

Analysis of RangeSum

Theorem: RangeSum(i, j) can be implemented in O(log n)

Case 1: The interval we're looking for is entirely contained in one half of
the current node

i J
(e

node

leftChild rightChild

Only one recursive call!

10

Analysis of RangeSum

Theorem: RangeSum(i, j) can be implemented in O(log n)

Case 2: The interval we're looking for is split across both halves

i J
EEEEEEEE——)
node
leftChild rightChild
e : -

Two recursive calls...

Claim: We only need two recursive calls once!

11

: RangeSum(i, j) can be implemented in O(log n)

Claim: We only need two recursive calls once!

Each recursive call wants a prefix or suffix of the node

i J i J
ss———)

node node

leftChild —-] rightChiId\)

* The prefix stretches into the right half

* The sum is the entire left half + a
recursive call on the right half

* Only one recursive call!

leftChild rightChild

* The prefix is entirely in the left half
* Only one recursive call!

12

Analysis of RangeSum

Theorem: RangeSum(i, j) can be implemented in O(log n)

Proof: We just argued that the recursion tree looks like...

—)
f DD D
D
N,

13

Applications

| 2 53 Y

Problem (Inversion count): Given a permutation pg, p1, ..., Pn—1 (of the integers

0...n — 1), an inversion is a pair p;, p; such that i < j but p; > p;. The problem
is to count the number of inversions in a sequence.

Slow Algorithm:

for i in [0, .., n-1]:
count how many P[j]'s 1in the
interval [1+1, n-1] are < P[1]

\ J \ J
| |

These sound like range queries???

for i in [0Q, .., n-1]:
for j in [i+1, .., n-1]:
if P[i] > P[]j]: count++

* How can we use SegTrees to speed up our algorithm?

Make this into a range query:

P =

SegTree =

The SegTree will store indicator variables, 1 means we have seen that
element before, 0 means we have not. RangeSum = count

count how many P[j]'s are < P[1]

bt —T2—0—2—76—70—
4 | X | x| X >2’;)_{
B A e e O e R

=1

Faster Inversion Count: Code

function inversionCount(A : int list) {

counts := SegTree([0] * len(A))
invCount := ©

for i in _Ln—l,r\-Z, ., 0] {
InvCoum— += Counk . ‘Qa”%&im (O/ A [‘;]) O (/
Counrs . A&th(ﬁ\[c], 1)

g)

O (log »)
}

return invCount

} - > (OCn /Oz(j n)

Implementation

* Remember binary heaps? Their structure is super useful!

Quick refresher:
* The root nodeis O
e The left childofiis 2i + 1

A 3 4 5 6
* The right child of i is 2i + 2

7 8 9 10 11 12 13 14

* Let’s also use this for range queries — This will be called a
* We will assume that n is a power of two for simplicity

constructor (A : int list) {

n = A.length AﬁQAMQg

nodes = [None] * (2*n - 1) & powd 2_

class SegTree { _ .
nodes : Node list # F1ll in the leaves

n : int } for 1 in [0, .., n-1] exclusive
nodes[i+(n-1)] = Node(A[i], i’.ii})

class Node { # Fill in the rest of the tree

val : int . for i in [n-2, n-3, .., 0] {

leftIdx : int

rightIdx : int } Io&}'ﬂ\)oflb V)oale/s [QJA’(L)J
function left(u) { MNML nocls C’rl M (¢)]

return 2*u+l; } y\oJu [)= Node (eprNode. mf +

(] [“N& M
f t ht | 6
u:gtﬁgz gi§+2;(l;) { lﬂa@l-NoJ(, eaaé'/olx

b 11g o Nodg mybrld >)

20

class SegTree {

Assign value x to position 1 nodes - Node list

function assign(i, x) {

nodeIdx =1 +n -1 no:oint }
nodes[nodeldx].val = x
while nodelIdx > 0 { class Node {
node ld x = PW (ndblblalx) val : int
leftIdx : int
node= Nodkes [node ldx] rightIdx : int }

hode Val = nodes [(eft (nadeldx)). v |
" Nodbes [ﬂdlm (W‘D‘)JM function parent(u) {

return (u - 1) // 2 }

function sum(nodeldx : int, i : int, j : int) {

i J
if (i == node.leftIdx and node.rightIdx == j) :
return pode .vad :
else { (ML(W'OL" + nodle . 'ﬂaMlolx)//z. :C J

mid := (L + R) / 2;

if (i >= mid) return Sum (’Yl‘jl\t(nodﬂ“x) IJ)

else if (j <= mid) return gum (Q%(mux) !)

else {

YUYh Sum(l%(nnrld&x)/ v mn'al)
 Ston(ke (ol i), mid) "R SR

11}

Reducing over other associative operations!
* 4 can be replaced with any binary associative operator, e.g., min, max
* Examples await you in recitation

* Just change the code in constructor, Assign, and sum
* Replace the + with your favourite associative operator!

return sum(left(nodeIdx), i, mid) + ==) return max(sum(left(nodeIdx), i, mid),
sum(right(nodeldx), mid, j) sum(right(nodeldx), mid, j))

* SegTrees allow us to implement dynamic range queries in O(log n)
* Assign/Update in O(log n)
* RangeSum in O(log n)

* SegTrees are useful for speeding up algorithms that require summing
over a range of elements

* E.g., speeding up inversion counting from 0(n?) to 0(n log n)

 We can implement a SegTree with any associative operation
* Plus/RangeSum, min/max, even fancier operations!
* See recitation!

	Slide 1: Algorithm Design and Analysis
	Slide 2: Roadmap for today
	Slide 3: The range query problem
	Slide 4: Algorithms
	Slide 5: Let’s make it more interesting
	Slide 6: Why are the updates slow?
	Slide 7: Divide-and-conquer summation
	Slide 8: Analysis of Assign
	Slide 9: Queries (RangeSum)
	Slide 10: Analysis of RangeSum
	Slide 11: Analysis of RangeSum
	Slide 12: Analysis of RangeSum
	Slide 13: Analysis of RangeSum
	Slide 14: Applications
	Slide 15: Speeding up algorithms
	Slide 16: Faster Inversion Count
	Slide 17: Faster Inversion Count: Code
	Slide 18: Implementation
	Slide 19: Data structure implementation
	Slide 20: Construction
	Slide 21: Assign
	Slide 22: Range Query
	Slide 23: Extensions of SegTrees
	Slide 24: Summary

