
Algorithm
Design and Analysis

Hashing: Fingerprinting (String Matching)

Roadmap for today

• Learn some properties about random primes and how to pick one

• Design random hashing schemes for strings

• Apply this idea (which we call Fingerprinting) to string matching

2

Formal model of computation

3

Model (word-RAM):
• We have unlimited constant-time addressable memory (“registers”)
• Each register can store a 𝑤-bit integer (a “word”)
• Reading/writing, arithmetic, logic, bitwise operations on a constant number of

words takes constant time
• With input size 𝑛, we need 𝑤 ≥ log 𝑛.

Random prime numbers

4

How do we pick a random prime?

• Suppose we want to pick a random prime in the range {0, … , 𝑀 − 1}

5

• Two important follow-up questions:
• How do we do step 2 (check if 𝑥 is prime)?
• How many iterations will this algorithm take (in expectation)?

Algorithm (rejection sampling):

Pick a random integer 𝑥 in the range {2, … , 𝑀 − 1}
Check if 𝒙 is prime. Is so output it, else go back to the first step

How to check if 𝒙 is a prime?

6

Simple trial division:
• Try every integer greater than 2, less than 𝑥, and check if it divides 𝑥
• Takes 𝑂(𝑥) iterations. That’s a lot for large values of 𝑥

Better trial division:
• Try every integer greater than 2, at most 𝑥, and check if it divides 𝑥
• Takes 𝑂(𝑥) iterations. That’s much better

Even better (but not covered in this class)
• Miller-Rabin algorithm. Takes 𝑂(polylog 𝑥) time and is randomized.
• AKS algorithm. 𝑂 polylog 𝑥 time, but a higher exponent and deterministic!

How many iterations of sampling?

• This is asking about the density of primes

• Let 𝜋 𝑛 be the number of primes between 1 and 𝑛

7

Prime Number Theorem:

𝜋 𝑛 ~
𝑛

ln 𝑛

The ~ notation means “is asymptotic to”:

lim
𝑛→∞

𝜋 𝑛

𝑛/ ln 𝑛
= 1

Tighter bounds

8

Chebyshev’s Theorem:

𝜋 𝑛 ≥
7

8

𝑛

ln 𝑛
>

𝑛

ln 𝑛
 for all 𝑛 ≥ 2

Dusart’s Theorem:
𝑛

ln 𝑛 − 1.1
≤ 𝜋 𝑛 ≤

𝑛

ln 𝑛 − 1
 for all 𝑛 ≥ 60184

So, how many iterations of sampling?

• Since 𝜋 𝑛 ≥
𝑛

ln 𝑛
 (Chebyshev), this means that

Pr[Random number in 2, … , 𝑀 − 1 is prime] ≥

𝑀
ln 𝑀

𝑀
=

1

ln 𝑀

• So, we should expect our rejection sampling algorithm to take about
𝐥𝐧 𝑴 iterations.

9

Super useful corollary: If we want there to be at least 𝑘 possible primes, then
we should pick a random prime from {2, … , 𝑀} where 𝑀 ≥ 2𝑘 lg 𝑘

The String Equality Problem

10

The String Equality Problem

11

Alice Bob

• 𝑥 and 𝑦 are 𝑛-bit strings (i.e., written in binary, 0 and 1)

• Alice and Bob want to exchange messages to decide if 𝑥 = 𝑦

• Simplest solution: Alice sends 𝑥 to Bob and Bob checks if 𝑥 = 𝑦

𝑥 𝑦

Is 𝑥 = 𝑦 ?

Probabilistic approach

• A simple information-theory argument shows that no scheme can do
better than just sending 𝑛 bits (there are 2𝑛 possible strings, so we
must communicate 𝑛 bits to be able to distinguish them).

12

• We can relax our requirement and aim for a probabilistic guarantee!
• If 𝑥 = 𝑦 then Pr Bob says 𝐞𝐪𝐮𝐚𝐥 = 1

• If 𝑥 ≠ 𝑦 then Pr Bob says 𝐞𝐪𝐮𝐚𝐥 ≤ 𝛿 for a very small delta

• E.g., if we pick 𝛿 = 0.01, we are saying we are okay with a 1%
probability of a false positive. We never allow false negatives.

A probabilistic algorithm

13

(remember that 𝑥 is a string of 𝑛 zeros and ones, so we can interpret it as an 𝑛-bit
integer written in binary, in {0, … , 2𝑛 − 1})

• Alice picks a random prime number p in 2, … , 𝑀 for some value of 𝑀
• Alice computes the hash value

h𝑝 𝑥 = 𝑥 mod 𝑝

• Alice sends 𝑝 and the hash value h𝑝(𝑥) to Bob

• Bob checks if h𝑝 x = h𝑝(𝑦), and if so, says equal, else says not equal

Analysis

• If 𝑥 = 𝑦 then Bob always says equal, so no false negatives

• Let’s pick 𝑀 = 200𝑛 log(100𝑛) (our super useful corollary from
before says that this gives us 100𝑛 possible primes)

• When do we get a false positive? Suppose Bob says equal, then…

14

Analysis

• How many divisors can 𝑥 − 𝑦 have? (remember they are 𝑛 bits long)

15

• 𝑝 is a random prime among 2, … , 200𝑛 log 100𝑛 , among which
there are 100𝑛 primes, so…

 Pr False positive = Pr 𝑝 divides 𝑥 − 𝑦

 =

In general, to get a probability of
1

s
= 𝛿, we pick 𝑝 from the range…

Reducing the error probability

• We picked 𝑝 as a random prime among 2, … , 200𝑛 log 100𝑛 ,

which gave us an error probability of
1

100

16

Cost analysis

• The naïve solution (send the whole 𝑛 bits to Bob) requires sending 𝑛
bits. How much better is the probabilistic solution?

• Alice must send the prime and the hash, which are both integers in
the range {2, … , 𝑀}, so this is 𝑂(log 𝑀) bits

• Remember 𝑀 = 2𝑠𝑛 log (𝑠𝑛)

17

The String-Matching
Problem

18

The String-Matching Problem

19

• For example, 𝑃 = 100,

𝑇 = 10100110011100

Problem (String Matching): Given a text string 𝑇 of 𝑛 bits and a pattern 𝑃 of 𝑚
bits, output all positions in 𝑇 where the substring 𝑃 occurs

Key idea (Karp-Rabin algorithm): Compute the hash of the pattern
and compare the hash to the hash of every length-𝑚 substring.

How to make it fast?

• There are 𝑂(𝑛) substrings, and computing their hash takes 𝑂(𝑚)
time each, so this is 𝑂(𝑛𝑚) time. The same as just manually
comparing each substring!

• How can we make it faster?

20

𝑇 = 10100110011100

“Rolling” the hash function

21

To go from 𝒙 to 𝒙′:
• Remove the high-order bit by subtracting 𝒙𝒉 ⋅ 𝟐𝒏−𝟏

• Shift every remaining bit one position by multiplying by 𝟐
• Append the new low-order bit by adding 𝒙𝒍

′

“Rolling” the hash function

• So, we can write 𝑥′ in terms of 𝑥 as

𝑥′ = 2 𝑥 − 𝑥ℎ ⋅ 2𝑚−1 + 𝑥𝑙
′

• Therefore, we can write ℎ𝑝(𝑥′) in terms of ℎ𝑝(𝑥) as…

 ℎ𝑝 𝑥′ =

22

• This is just a constant number of arithmetic operations mod 𝑝!

The Karp-Rabin Algorithm

23

1. Pick a random prime 𝑝 in 2, … , 𝑀 for 𝑀 = 2𝑠𝑚 log2 (𝑠𝑚)

2. Compute ℎ𝑝(𝑃) and ℎ𝑝 2𝑚

3. Compute ℎ𝑝 𝑇0…𝑚−1 and check if it matches ℎ𝑝(𝑃)

 If so, output match at position 0

4. For each 𝑖 ∈ 0, … , 𝑛 − 𝑚 − 1

i. Compute ℎ𝑝 𝑇𝑖+1,…,𝑖+𝑚 using ℎ𝑝 𝑇𝑖…𝑖+𝑚−1 as per the previous slide

ii. If ℎ𝑝 𝑇𝑖+1…𝑖+𝑚 = ℎ𝑝(𝑃), output match at position 𝒊 + 𝟏

Error analysis

24

• We do comparisons, each with a probability of failure

• By a union bound, the probability of encountering at least one failure is

• So, we pick a prime from the range 𝑀 =

Theorem: We can achieve an error probability of 𝛿 using Karp-Rabin with a prime

𝑝 that is 𝑂 log
1

𝛿
+ log 𝑚 + log 𝑛 bits.

Cost analysis

• We are still working in the word-RAM model

• Since the text string has 𝑛 characters/bits in it, we have 𝑤 ≥ log 𝑛

• Same for the pattern length 𝑚, we have 𝑤 ≥ log 𝑚

• Say we want polynomial error probability, i.e.,

𝛿 =
1

𝑂 poly 𝑛, 𝑚

• Therefore, log 𝑀 = 𝑂 log poly(𝑛, 𝑚) = 𝑂 log 𝑛 + log 𝑚

• Since 𝑝 < 𝑀, all arithmetic mod 𝑝 is constant time!

25

Cost analysis

• Computing ℎ𝑝(𝑥) for an 𝑚-bit 𝑥 can be done in 𝑂 𝑚 time
• Hashes of powers of 2 can be computed iteratively by multiplying the

previous power of 2 by 2 then taking mod 𝑝

• So, the initial hashes of Karp-Rabin h𝑝(𝑃), h𝑝 2𝑚 , h𝑝 𝑇0…𝑚−1 can
be computed in 𝑂 𝑚 time

• Rolling from ℎ𝑝 𝑇𝑖+1…𝑖+𝑚 from ℎ𝑝 𝑇𝑖…𝑖+𝑚−1 takes a constant
number of arithmetic operations, each of which takes 𝑂 1 time!

 Total runtime =

26

Summary of fingerprinting

• We rely heavily on randomness, specifically picking a random prime!

• We can check whether two 𝑛-bit strings are equal with low failure
probability by comparing a 𝑂(log 𝑛)-bit hash, which is very cheap
compared to 𝑂 𝑛 bits!

• Applied to the pattern matching problem, this gives us the Karp-
Rabin algorithm, which finds the locations of a pattern in a text in
𝑂 𝑛 + 𝑚 time with small failure probability

27

	Slide 1: Algorithm Design and Analysis
	Slide 2: Roadmap for today
	Slide 3: Formal model of computation
	Slide 4: Random prime numbers
	Slide 5: How do we pick a random prime?
	Slide 6: How to check if bold italic x is a prime?
	Slide 7: How many iterations of sampling?
	Slide 8: Tighter bounds
	Slide 9: So, how many iterations of sampling?
	Slide 10: The String Equality Problem
	Slide 11: The String Equality Problem
	Slide 12: Probabilistic approach
	Slide 13: A probabilistic algorithm
	Slide 14: Analysis
	Slide 15: Analysis
	Slide 16: Reducing the error probability
	Slide 17: Cost analysis
	Slide 18: The String-Matching Problem
	Slide 19: The String-Matching Problem
	Slide 20: How to make it fast?
	Slide 21: “Rolling” the hash function
	Slide 22: “Rolling” the hash function
	Slide 23: The Karp-Rabin Algorithm
	Slide 24: Error analysis
	Slide 25: Cost analysis
	Slide 26: Cost analysis
	Slide 27: Summary of fingerprinting

