Algorithm
Design and Analysis

Hashing: Fingerprinting (String Matching)

Roadmap for today

* Learn some properties about random primes and how to pick one

* Design random hashing schemes for strings

* Apply this idea (which we call Fingerprinting) to string matching

Model (word-RAM):

* We have unlimited constant-time addressable memory (“registers”)

e Each register can store a w-bit integer (a “word”)

* Reading/writing, arithmetic, logic, bitwise operations on a constant number of
words takes constant time

* With input size n, we need w = log n.

Random prime numbers

* Suppose we want to pick a random prime in the range {0, ..., M — 1}

Algorithm (rejection sampling):
Pick a random integer x in the range {2, ..., M — 1}
Check if x is prime. Is so output it, else go back to the first step

* Two important follow-up questions:
 How do we do step 2 (check if x is prime)?
* How many iterations will this algorithm take (in expectation)?

Simple trial division:
* Try every integer greater than 2, less than x, and check if it divides x
* Takes O(x) iterations. That’s a lot for large values of x

Better trial division:
* Try every integer greater than 2, at most +/x, and check if it divides x
* Takes O(+/x) iterations. That’s much better

Even better (but not covered in this class)
* Miller-Rabin algorithm. Takes O (polylog x) time and is randomized.
* AKS algorithm. O(polylog x) time, but a higher exponent and deterministic!

How many iterations of sampling?

* This is asking about the density of primes
* Let m(n) be the number of primes between 1 and n

The ~ notation means “is asymptotic to”:

n : m(n) _
”(n)'vm am (n/ lnn) =1

Prime Number Theorem:

Tighter bounds

e Since m(n) = — (Chebyshev), this means that
Inn M
InM _ 1
M In M

* So, we should expect our rejection sampling algorithm to take about
In M iterations.

Pr[Random number in{2,...,M — 1} is prime]| >

Super useful corollary: If we want there to be at least k possible primes, then
we should pick a random prime from {2, ..., M} where M = 2k Ig k

The String Equality Problem

The String Equality Problem

Alice Bob

* x and y are n-bit strings (i.e., written in binary, 0 and 1)
* Alice and Bob want to exchange messages to decide if x = y
* Simplest solution: Alice sends x to Bob and Bob checks if x = vy

11

* A simple information-theory argument shows that no scheme can do
better than just sending n bits (there are 2" possible strings, so we
must communicate n bits to be able to distinguish them).

* We can relax our requirement and aim for a probabilistic guarantee!
* If x = y then Pr|Bob says equal] = 1
* If x # y then Pr|Bob says equal] < § for a very small delta

e E.g., if we pick 6 = 0.01, we are saying we are okay with a 1%
probability of a false positive. We never allow false negatives.

Alice picks a pin{2,..., M} for some value of M
Alice computes the hash value

h,(x) =x modp
Alice sends p and the hash value h,, (x) to Bob

Bob checks if h,,(x) = h,(y), and if so, says equal, else says not equal

(remember that x is a string of n zeros and ones, so we can interpret it as an n-bit
integer written in binary, in {0, ..., 2™ — 1})

* If x = y then Bob always says equal, so no false negatives

* Let’s pick M = 2001 log(100n) (our super useful corollary from
before says that this gives us 100n possible primes)

* When do we get a false positive? Suppose Bob says equal, then...

X = Y mk = Ix-yl= 0 ml p
- P 8 A ottulﬁar oj /x-:j)

'P’\'lm
* How many divisors can |x — y| have? (remember they are n bits long)

{ < n } (wm% = Z’Z—'Z‘--Z--z’j

* p is a random prime among {2, ..., 200n log(100n)}, among which
there are 100n primes, so...

Pr[False positive] = Pr[p divides |x — y|]
7t divisors (bal) ro

#fDKS:ML Fﬂwws < T I Z

100 .

* We picked p as a random prime among {2, ..., 200n log(100n)},
which gave us an error probability of Flo

In general, to get a probability of% = 0, we pick p from the range...

{ 12, 2sn \oﬂﬁgn)} }

* The naive solution (send the whole n bits to Bob) requires sending n
bits. How much better is the probabilistic solution?

e Alice must send the prime and the hash, which are both integers in
the range {2, ..., M}, so this is O(log M) bits

* Remember M = 2sn log (sn)
2 log, (Zsm /03 gh)

‘-—O(logs +/03h> JBH‘S!
g s=0(pln) — O log n) bis |

The String-Matching
Problem

Problem (String Matching): Given a text string T of n bits and a pattern P of m
bits, output all positions in T where the substring P occurs

* For example, P = 100, Na.tve oklj = OO’\ m)

T =10100110011100

: Compute the hash of the pattern
and compare the hash to the hash of every length-m substring.

* There are O(n) substrings, and computing their hash takes O(m)
time each, so this is O(nm) time. The same as just manually
comparing each substring!

e How can we make it faster? A

T =90100110011100

X, X <

N0110011

x X

(lmod P)
» Remove the high-order bit by subtracting x, - 2™ 1
e Shift every remaining bit one position by multiplying by 2
* Append the new low-order bit by adding x;

* So, we can write x' in terms of x as

x'=2(x—xp 2™ 1) +x modk p
* Therefore, we can write h,(x") in terms of h,,(x) as...

hy(x') = | L lnr(x) - Xh')"P(Zm)* Xe,') Mook]D

old hash [PTemmpure

* This is just a constant number of arithmetic operations mod p!

Pick a random prime p in {2, ..., M} for M = 2sm log, (sm)
Compute h,(P) and h,(2™)

Compute hy,(Ty_ m—1) and check if it matches h, (P)
If so, output match at position 0

Foreachi € {0,...,n —m — 1}
i. Compute h, (Tis1_i+m) using hy,(T;. i+m—1) as per the previous slide
i. Ifh,(Tit1. i+m) = hp(P), output match at position i + 1

: We can achieve an error probability of 6 using Karp-Rabin with a prime
p thatis O (log% + logm + log n) bits.

Nn-m +|

* We do [<N] comparisons, each with a probability I/ g } of failure

* By a union bound, the probability of encountering at least one failure is

s ba(y)- O (log g +logn < by m)
* So, we pick a prime from the rangeM:{ Z—é-hr___g loﬂ(j;’h:)J

* We are still working in the word-RAM model

* Since the text string has n characters/bits in it, we have w > logn
* Same for the pattern length m, we have w = logm

* Say we want polynomial error probability, i.e.,

1
5 =
O(poly(n, m))

* Therefore, log M = O(log(poly(n,m))) = O(logn + logm)
* Since p < M, all arithmetic mod p is constant time!

* Computing h,(x) for an m-bit x can be done in O(m) time

* Hashes of powers of 2 can be computed iteratively by multiplying the
previous power of 2 by 2 then taking mod p

* So, the initial hashes of Karp-Rabin h,,(P), h,,(2™), h,,(Ty_m-1) can
be computed in O(m) time

* Rolling from h,,(Ti41 _j+m) from hy, (T} ;+m—1) takes a constant
number of arithmetic operations, each of which takes O(1) time!

Total runtime = [O(n +m) J

* We rely heavily on randomness, specifically

* We can check whether two n-bit strings are equal with
by comparing a O(log n)-bit hash, which is very cheap
compared to O(n) bits!

* Applied to the pattern matching problem, this gives us the
, Which finds the locations of a pattern in a text in
O(n + m) time with small failure probability

	Slide 1: Algorithm Design and Analysis
	Slide 2: Roadmap for today
	Slide 3: Formal model of computation
	Slide 4: Random prime numbers
	Slide 5: How do we pick a random prime?
	Slide 6: How to check if bold italic x is a prime?
	Slide 7: How many iterations of sampling?
	Slide 8: Tighter bounds
	Slide 9: So, how many iterations of sampling?
	Slide 10: The String Equality Problem
	Slide 11: The String Equality Problem
	Slide 12: Probabilistic approach
	Slide 13: A probabilistic algorithm
	Slide 14: Analysis
	Slide 15: Analysis
	Slide 16: Reducing the error probability
	Slide 17: Cost analysis
	Slide 18: The String-Matching Problem
	Slide 19: The String-Matching Problem
	Slide 20: How to make it fast?
	Slide 21: “Rolling” the hash function
	Slide 22: “Rolling” the hash function
	Slide 23: The Karp-Rabin Algorithm
	Slide 24: Error analysis
	Slide 25: Cost analysis
	Slide 26: Cost analysis
	Slide 27: Summary of fingerprinting

