Algorithm Design and Analysis

Hashing: Universal and Perfect Hashing

Roadmap for today

- Review the dictionary problem and motivate hashing
- See universal hashing and how to prove that a family is universal
- See an algorithm for static perfect hashing

Formal model of computation

Model (word-RAM):

- We have unlimited constant-time addressable memory ("registers")
- Each register can store a w-bit integer (a "word")
- Reading/writing, arithmetic, logic, bitwise operations on a constant number of words takes constant time
- With input size n, we need $w \ge \log n$.

Dictionaries & Hashing

The dictionary problem

The dictionary data type stores *items* that have associated unique *keys*

STUDENT

id: *integer*

name: *string*

grade: character

Dictionary Interface

insert(item): Insert the given item (associated with its key)

lookup(key): Return the item with the given key if it exists

delete(key): Delete the item with the given key if it exists

Python equivalent

d[key] = item

item = d[key] (throws **KeyError** if not present)

d.pop(key) (throws **KeyError** if not present)

Formal setup for hashing/hash tables

- The keys come from U = [0 ... u 1] (the *universe* of keys)
- We want to store items in a table A of size m. Assume $u\gg m$, so we can not just store key x at A[x]

Key idea (Hashing): Define a function $h: U \to \{0,1,...,m-1\}$. Try to store item with key x at A[h(x)]

Handling collisions

Approach #1 (Open addressing): When a collision occurs, cleverly find a different location in the table for the new item

- Very hard to analyze, bad performance if not implemented well
- Amazing performance if done well! All state-of-the-art hashtables do this

Approach #2 (Chaining): Instead of storing a single item in each slot, store a list of items. Add all items that hash to that slot to the list

- Simple to analyze and implement
- Decent performance in practice, used by the C++ standard library
- Much easier to parallelize

Prehashing non-integer keys

Idea (prehashing): For non-integer keys, we want to convert them into some representative integer.

Example (strings): Strings can be interpreted as integers by interpreting each character as a digit, in base alphabet size (e.g., base-128 for ASCII)

B A C Z
$$66 65 67 90$$

$$= 66 \cdot 128^{3} + 65 \cdot 128^{2} + 67 \cdot 128 + 90$$

$$= 142,340,002$$

Choosing a hash function h

Main goal: We want it to be unlikely that h(x) = h(y) for $x \neq y$

- We want m = O(n), where n is the number of keys in the table
 - We could just pick m=u then there are no collisions!!
 - But this is an unacceptable amount of memory if $u\gg n$
- We also want h(x) to be fast to compute. Ideally O(1) time
- How long does a hashtable operation take using chaining?

So which hash function do we pick?

- For any hash function you choose, I can find a set of n items that hash to the same location...
- There's no such thing as a hash function that works for every input.

Big idea (randomization): We need to employ randomization to build a hash function that doesn't have a horrible worst-case behaviour

 Specifically, we want to choose a random hash function from some big set of possible hash functions

Random hash families

Definition (totally random hash): A set \mathcal{H} of hash functions is **totally random** if for all $x \in U$, $t \in \{0, ... m - 1\}$, independent of all $y \in U$

$$\Pr_{h \in \mathcal{H}}[h(x) = t] = \frac{1}{m}$$

- Essentially equivalent to "Simple uniform hashing" (if you know it)
- Totally random hashing has all nice properties, but it's not possible to do practically...

Less random, but still random

Goal: We need a hash function that is still "pretty random", but not totally random, since that's too expensive

Definition (Universal Hashing): A set \mathcal{H} of hash functions $h:U\to\{0,\dots,m-1\}$ is called **universal** if for all $x\neq y$

$$\Pr_{h \in \mathcal{H}}[h(x) = h(y)] \le \frac{1}{m}$$

Can compute probability by counting:

$$\Pr_{h \in \mathcal{H}}[h(x) = h(y)] = \frac{|h(x) = h(y)|_{h \in \mathcal{H}}}{|\mathcal{H}|}$$

Examples: Universal or not?

$$|U|=2, m=2$$

	а	b
h_1	0	0
h_2	0	1

	а	b
h_1	0	0
h_2	1	1

	а	b
h_1	0	1
h_2	1	0

	а	b
h_1	0	1
h_2	1	0
h_3	0	1

More examples

$$|U|=3, m=2$$

	а	b	С
h_1	0	0	1
h_2	1	1	0
h_3	1	0	1

$$|U|=3, m=3$$

	а	b	С
h_1	0	0	0
h_2	0	1	2
h_3	1	2	0
h_4	2	0	1

Analysis of Universal Hashing

Theorem: If \mathcal{H} is a universal family, then for any set $S \subseteq U$ with |S| = n, for any $x \in S$, if h is chosen at random from \mathcal{H} , then the **expected** number of collisions between x and other elements is at most n/m.

$$C_{xy} = \{1 \text{ if } h(x) = h(y) \text{ else } 03$$

$$C_{x} = \{2 \text{ Cxy} \quad E[C_{xy}] = Pr[h(x) = h(y)] \leq \frac{1}{m}$$

$$E[C_{x}] = E[\{2 \text{ Cxy}\}] = \{2 \text{ E}[C_{xy}] \leq \frac{n}{m}$$

Corollary

Definition (Load Factor): The quantity n/m is called the load factor

Corollary: Using separate chaining, given a universal family \mathcal{H} , the expected cost of each operation is O(1+n/m)

- Therefore, if $m = \Theta(n)$, the expected cost of each operation is O(1)
- If you don't know n in advance, resize the table whenever the load factor exceeds some constant threshold

Assumes h can be computed in O(1) time

Okay... how do we construct one?

Construction (Random binary matrix): Assume $|U| = 2^w$, $m = 2^b$

- Let A be a random $w \times b$ matrix of zeros and ones
- Interpret $x \in U$ as a w length vector of its bits
- Let $h(x) = Ax \mod 2$, again interpreting h(x) as a b length vector of bits

Analysis of random binary matrix

Theorem: The family produced by the random binary matrix method is universal,

i.e., for
$$x \neq y$$
, $\Pr_{h \in \mathcal{H}}[h(x) = h(y)] = \frac{1}{m}$

Let
$$x \neq y$$
. $\Rightarrow \exists i^{\times} x_{i^{\times}} \neq y_{i^{\times}}$ where $y_{i^{\times}} = 0$ $y_{i^{\times}} = 1$

$$h(x) = \underset{i \neq i^{\times}}{\neq} A_{i} \times_{i} \quad h(y) = \underset{i \neq i^{\times}}{\neq} A_{i} y_{i} + \underset{i^{\times}}{A_{i^{\times}}} \quad \text{independent}$$

$$|f(x) = h(y)| \Rightarrow h(x) - h(y) = 0 \quad f(x) = \underset{i \neq i^{\times}}{\neq} A_{i} (x_{i^{\times}} - y_{i}) = \underset{i^{\times}}{A_{i^{\times}}}$$

$$= \left(\frac{1}{2}\right)^{6} = \left(\frac{1}$$

Wait, that's not constant time!

• How efficient is computing h(x)?

• Thankfully, there exists universal families whose hash functions can be computed in constant time (but they are harder to analyze).

Example (The multiplication method): Suppose $|U|=2^w$ and choose a power of two table size $m=2^r$ and a random odd integer a

$$h(x) = [(ax) \bmod 2^w] \gg (w - r)$$

Even more randomness!

• Can we make a hash family that is "more random" than universal, but still less than totally random? Yes!

Definition (pairwise independent): A hash family \mathcal{H} is called **pairwise independent** if for every pair $x_1 \neq x_2$ of distinct keys and every pair of values $v_1, v_2 \in \{0, ..., m-1\}$ (not necessarily distinct),

$$\Pr_{h \in \mathcal{H}}[h(x_1) = v_1 \text{ and } h(x_2) = v_2] = \frac{1}{m^2}$$

Intuitively, for every pair of distinct keys (x_1, x_2) , all pairs of values (v_1, v_2) are equally likely to occur (there are m^2 possible pairs of values).

Even more randomness!

Definition (k-wise independent): A hash family \mathcal{H} is called k-wise independent if for every set of k distinct keys x_1, \ldots, x_k and k values v_1, \ldots, v_k (not necessarily distinct) we have

$$\Pr_{h \in \mathcal{H}}[h(x_1) = v_1 \text{ and } \dots \text{ and } h(x_k) = v_k] = \frac{1}{m^k}$$

- The k=1 case is usually called *uniform* (since "1-wise independent" sounds funny)
- The k=2 case is pairwise independence from the previous slide

Static perfect hashing (Optional content)

Static perfect hashing

Problem: Suppose we **know the n keys in advance** want deterministic constant query time in the worst case? Is this possible?

Idea: Reduce collision probability by making the table really really big!

Theorem: Given a universal family \mathcal{H} , taking $m=n^2$ gives us

$$\Pr_{h \in \mathcal{H}}[\text{no collisions}] \ge \frac{1}{2}$$

Some analysis

Theorem: Given a universal family \mathcal{H} , taking $m=n^2$ gives us

$$\Pr_{h \in \mathcal{H}}[\text{no collisions}] \ge \frac{1}{2}$$

That's a bit too much

- Okay, no collisions is nice, but n^2 space is way too much.
- Can we achieve the same with only O(n) space?

Idea: Put hashtables inside a hashtable! The number of collisions per element is usually small, so squaring *those numbers* might not be too big

FKS Hashing

• Choose a hash function $h \in \mathcal{H}$ (universal)

$$h: U \to \{0, ..., n-1\}$$

• Let L_i be the number of keys x such that

$$h(x) = i$$

• Store the L_i items at position i in a second-level table of size $(L_i)^2$

Analysis of second-level tables

- We know that for each second-level table, we have a $\geq 1/2$ probability that there are no collisions
- There are n such tables, so there are bound to be **some** with collisions

Solution: If there are collisions in a second-level table, just pick another random hash from the family until there isn't.

Analysis of top level

Theorem: If h is chosen from a universal family \mathcal{H} , then

$$\Pr_{h \in \mathcal{H}} \left[\sum L_i^2 > 4n \right] \le \frac{1}{2}$$

Analysis continued...

Lemma: Define $C_{xy} = 1$ if h(x) = h(y), else $C_{xy} = 0$

$$\sum (L_i)^2 = \sum \sum C_{xy}$$

Analysis continued continued...

Lemma: If h is chosen from a universal family \mathcal{H} , then

$$\mathbb{E}\left[\sum (L_i)^2\right] < 2N$$

Completing the analysis

Theorem: If h is chosen from a universal family \mathcal{H} , then

$$\Pr_{h \in \mathcal{H}} \left| \sum_{i} L_i^2 > 4n \right| \le \frac{1}{2}$$

Summary of today

- Universal hashing gives us "enough" randomness to get nice results
 - Operations on a hash table with separate chaining run in O(1 + n/m) time.
 - Static FKS hashing gives deterministic lookup in constant worst-case time.
- Proving that a hash family is universal / k-wise independent can be quite tricky, but is very important
- For "more randomness", we can employ pairwise independent, or k-wise independent hashing.