
Algorithm
Design and Analysis

Hashing:  Universal and Perfect Hashing



Roadmap for today

• Review the dictionary problem and motivate hashing

• See universal hashing and how to prove that a family is universal

• See an algorithm for static perfect hashing

2



Formal model of computation

3

Model (word-RAM): 
• We have unlimited constant-time addressable memory (“registers”)
• Each register can store a 𝑤-bit integer (a “word”)
• Reading/writing, arithmetic, logic, bitwise operations on a constant number of 

words takes constant time
• With input size 𝑛, we need 𝑤 ≥ log 𝑛.



Dictionaries & Hashing

4



The dictionary problem

The dictionary data type stores items that have associated unique keys

Dictionary Interface

insert(item): Insert the given item (associated with its key)

lookup(key): Return the item with the given key if it exists

delete(key): Delete the item with the given key if it exists

STUDENT

id: integer

name: string

grade: character

unique key

Python equivalent

d[key] = item

item = d[key]  (throws KeyError if not present)

d.pop(key)  (throws KeyError if not present)

5



Formal setup for hashing/hash tables

• The keys come from 𝑈 = [0 … 𝑢 − 1]  (the universe of keys)

• We want to store items in a table 𝐴 of size 𝑚.  Assume 𝑢 ≫ 𝑚, so we 
can not just store key 𝑥 at 𝐴[𝑥]

6

Key idea (Hashing):  Define a function ℎ ∶ 𝑈 → {0,1, … , 𝑚 − 1}. 
Try to store item with key 𝑥 at 𝐴[ℎ 𝑥 ]



Handling collisions

Approach #1 (Open addressing): When a collision occurs, cleverly find 
a different location in the table for the new item

• Very hard to analyze, bad performance if not implemented well

• Amazing performance if done well! All state-of-the-art hashtables do this

Approach #2 (Chaining): Instead of storing a single item in each slot, 
store a list of items. Add all items that hash to that slot to the list

• Simple to analyze and implement

• Decent performance in practice, used by the C++ standard library

• Much easier to parallelize

7



Prehashing non-integer keys

Example (strings): Strings can be interpreted as integers by interpreting each 
character as a digit, in base alphabet size (e.g., base-128 for ASCII)

B    A    C   Z
66  65   67  90

= 𝟔𝟔 ⋅ 𝟏𝟐𝟖𝟑 + 𝟔𝟓 ⋅ 𝟏𝟐𝟖𝟐 + 𝟔𝟕 ⋅ 𝟏𝟐𝟖 + 𝟗𝟎

= 142,340,002
8

Idea (prehashing): For non-integer keys, we want to convert them 
into some representative integer.



Choosing a hash function 𝒉

• We want 𝑚 = 𝑂(𝑛), where 𝑛 is the number of keys in the table
• We could just pick 𝑚 = 𝑢 then there are no collisions!!

• But this is an unacceptable amount of memory if 𝑢 ≫ 𝑛

• We also want ℎ(𝑥) to be fast to compute. Ideally 𝑂(1) time

• How long does a hashtable operation take using chaining?

9

Main goal:  We want it to be unlikely that ℎ 𝑥 = ℎ(𝑦) for 𝑥 ≠ 𝑦



So which hash function do we pick?

• For any hash function you choose, I can find a set of 𝑛 items that hash 
to the same location…

• There’s no such thing as a hash function that works for every input.

• Specifically, we want to choose a random hash function from some 
big set of possible hash functions

10

Big idea (randomization):  We need to employ randomization to build 
a hash function that doesn’t have a horrible worst-case behaviour



Random hash families

• Essentially equivalent to “Simple uniform hashing” (if you know it)

• Totally random hashing has all nice properties, but it's not possible to 
do practically…

11

Definition (totally random hash): A set ℋ of hash functions is totally random if 
for all 𝑥 ∈ 𝑈, 𝑡 ∈ {0, … 𝑚 − 1}, independent of all 𝑦 ∈ 𝑈

Pr
ℎ∈ℋ

ℎ 𝑥 = 𝑡 =
1

𝑚



Less random, but still random

Can compute probability by counting:

Pr
ℎ∈ℋ

ℎ 𝑥 = ℎ(𝑦) =
ℎ 𝑥 = ℎ 𝑦 ℎ∈ℋ

ℋ
12

Definition (Universal Hashing):  A set ℋ of hash functions ℎ ∶ 𝑈 → {0, … , 𝑚 − 1} 
is called universal if for all 𝑥 ≠ 𝑦

Pr
ℎ∈ℋ

ℎ 𝑥 = ℎ(𝑦) ≤
1

𝑚

Goal:  We need a hash function that is still “pretty random”, but not 
totally random, since that’s too expensive



Examples: Universal or not?

𝒂 𝒃

ℎ1 0 0

ℎ2 0 1

𝒂 𝒃

ℎ1 0 1

ℎ2 1 0

𝒂 𝒃

ℎ1 0 1

ℎ2 1 0

ℎ3 0 1

𝑼 = 𝟐, 𝒎 = 𝟐

𝒂 𝒃

ℎ1 0 0

ℎ2 1 1

13



More examples

𝒂 𝒃 c

ℎ1 0 0 0

ℎ2 0 1 2

ℎ3 1 2 0

ℎ4 2 0 1

𝑼 = 𝟑, 𝒎 = 𝟑

𝒂 𝒃 c

ℎ1 0 0 1

ℎ2 1 1 0

ℎ3 1 0 1

𝑼 = 𝟑, 𝒎 = 𝟐

14



Analysis of Universal Hashing

15

Theorem: If ℋ is a universal family, then for any set 𝑆 ⊆ 𝑈 with 𝑆 = 𝑛, for 
any 𝑥 ∈ 𝑆, if ℎ is chosen at random from ℋ, then the expected number of 
collisions between 𝑥 and other elements is at most 𝑛/𝑚.



Corollary

• Therefore, if 𝑚 = Θ 𝑛 , the expected cost of each operation is 𝑂(1)

• If you don't know 𝑛 in advance, resize the table whenever the load 
factor exceeds some constant threshold

Assumes ℎ can be computed in 𝑂(1) time

16

Definition (Load Factor): The quantity 𝑛/𝑚 is called the load factor

Corollary: Using separate chaining, given a universal family ℋ, the expected cost 
of each operation is 𝑂(1 + 𝑛/𝑚)



Okay… how do we construct one?

𝐴

𝒘

𝒃

𝒘

𝑥 =

17

Construction (Random binary matrix):  Assume 𝑈 = 2𝑤, 𝑚 = 2𝑏

• Let 𝐴 be a random 𝑤 × 𝑏 matrix of zeros and ones
• Interpret 𝑥 ∈ 𝑈 as a 𝑤 length vector of its bits
• Let ℎ 𝑥 = 𝐴𝑥 mod 2, again interpreting ℎ(𝑥) as a 𝑏 length vector of bits



Analysis of random binary matrix

18

Theorem: The family produced by the random binary matrix method is universal, 

i.e., for 𝑥 ≠ 𝑦, Pr
ℎ∈ℋ

ℎ 𝑥 = ℎ(𝑦) =
1

𝑚



Wait, that’s not constant time!

• How efficient is computing ℎ(𝑥)?

• Thankfully, there exists universal families whose hash functions can 
be computed in constant time (but they are harder to analyze).

19

Example (The multiplication method): Suppose 𝑈 = 2𝑤 and choose a power of 
two table size 𝑚 = 2𝑟 and a random odd integer 𝒂

ℎ 𝑥 = 𝑎𝑥  mod 2𝑤 ≫ (𝑤 − 𝑟) 



Even more randomness!

• Can we make a hash family that is “more random” than universal, but 
still less than totally random?  Yes!

Intuitively, for every pair of distinct keys (𝑥1, 𝑥2), all pairs of values (𝑣1, 𝑣2) 
are equally likely to occur (there are 𝑚2 possible pairs of values).

20

Definition (pairwise independent): A hash family ℋ is called pairwise independent 
if for every pair 𝑥1 ≠ 𝑥2 of distinct keys and every pair of values 𝑣1, 𝑣2 ∈
{0, … , 𝑚 − 1}  (not necessarily distinct),

Pr
ℎ∈ℋ

ℎ 𝑥1 = 𝑣1 and ℎ 𝑥2 = 𝑣2 =
1

𝑚2
 



Even more randomness!

• The 𝑘 = 1 case is usually called uniform (since “1-wise independent” 
sounds funny)

• The 𝑘 = 2 case is pairwise independence from the previous slide

21

Definition (𝒌-wise independent):  A hash family ℋ is called 𝑘-wise independent if 
for every set of 𝑘 distinct keys 𝑥1, … , 𝑥𝑘 and 𝑘 values 𝑣1, … , 𝑣𝑘 (not necessarily 
distinct) we have

Pr
ℎ∈ℋ

ℎ 𝑥1 = 𝑣1 and …  and ℎ 𝑥𝑘 = 𝑣𝑘 =
1

𝑚𝑘 



Static perfect hashing 
(Optional content)

22



Static perfect hashing

23

Problem:  Suppose we know the 𝒏 keys in advance want deterministic constant 
query time in the worst case?  Is this possible?

Idea:  Reduce collision probability by making the table really really big!

Theorem:  Given a universal family ℋ, taking 𝑚 = 𝑛2 gives us

Pr
ℎ∈ℋ

no collisions ≥
1

2
 



Some analysis

24

Theorem:  Given a universal family ℋ, taking 𝑚 = 𝑛2 gives us

Pr
ℎ∈ℋ

no collisions ≥
1

2
 



That’s a bit too much

• Okay, no collisions is nice, but 𝑛2 space is way too much.

• Can we achieve the same with only 𝑂(𝑛) space?

25

Idea:  Put hashtables inside a hashtable! The number of collisions per element is 
usually small, so squaring those numbers might not be too big



FKS Hashing

𝑼

𝐿0 
items

𝐿1 
items

⋮

⋮

𝐿𝑛−1 
items

𝒏
𝒉• Let 𝐿𝑖 be the number 

of keys 𝑥 such that

 ℎ 𝑥 = 𝑖

Table of size 𝐿0
2

• Store the 𝐿𝑖 items at 
position 𝑖 in a 
second-level table of 
size 𝐿𝑖

2

Table of size 𝐿1
2

⋮

• Choose a hash function 
ℎ ∈ ℋ (universal)

ℎ: 𝑈 → {0, … , 𝑛 − 1}

• Use a random hash 
function for each 
second-level table
ℎ𝑖 ∶ 𝑈 → {0, … , 𝐿𝑖

2}

26



Analysis of second-level tables

• We know that for each second-level table, we have a ≥ 1/2 
probability that there are no collisions

• There are 𝑛 such tables, so there are bound to be some with collisions

27

Solution:  If there are collisions in a second-level table, just pick another random 
hash from the family until there isn’t.



Analysis of top level

28

Theorem:  If ℎ is chosen from a universal family ℋ, then

Pr
ℎ∈ℋ

෍ 𝐿𝑖
2 > 4𝑛 ≤

1

2
 



Analysis continued…

29

Lemma: Define 𝐶𝑥𝑦 = 1 if ℎ 𝑥 = ℎ 𝑦 ,   else 𝐶𝑥𝑦 = 0

෍ 𝐿𝑖
2 = ෍ ෍ 𝐶𝑥𝑦



Analysis continued continued…

30

Lemma:  If ℎ is chosen from a universal family ℋ, then

𝔼 ෍ 𝐿𝑖
2 < 2𝑁



Completing the analysis

31

Theorem:  If ℎ is chosen from a universal family ℋ, then

Pr
ℎ∈ℋ

෍ 𝐿𝑖
2 > 4𝑛 ≤

1

2
 



Summary of today

• Universal hashing gives us “enough” randomness to get nice results
• Operations on a hash table with separate chaining run in 𝑂(1 + 𝑛/𝑚) time.

• Static FKS hashing gives deterministic lookup in constant worst-case time.

• Proving that a hash family is universal / 𝒌-wise independent can be 
quite tricky, but is very important

• For “more randomness”, we can employ pairwise independent, or 𝑘-
wise independent hashing.

32


	Slide 1: Algorithm Design and Analysis
	Slide 2: Roadmap for today
	Slide 3: Formal model of computation
	Slide 4: Dictionaries & Hashing
	Slide 5: The dictionary problem
	Slide 6: Formal setup for hashing/hash tables
	Slide 7: Handling collisions
	Slide 8: Prehashing non-integer keys
	Slide 9: Choosing a hash function bold italic h
	Slide 10: So which hash function do we pick?
	Slide 11: Random hash families
	Slide 12: Less random, but still random
	Slide 13: Examples: Universal or not?
	Slide 14: More examples
	Slide 15: Analysis of Universal Hashing
	Slide 16: Corollary
	Slide 17: Okay… how do we construct one?
	Slide 18: Analysis of random binary matrix
	Slide 19: Wait, that’s not constant time!
	Slide 20: Even more randomness!
	Slide 21: Even more randomness!
	Slide 22: Static perfect hashing (Optional content)
	Slide 23: Static perfect hashing
	Slide 24: Some analysis
	Slide 25: That’s a bit too much
	Slide 26: FKS Hashing
	Slide 27: Analysis of second-level tables
	Slide 28: Analysis of top level
	Slide 29: Analysis continued…
	Slide 30: Analysis continued continued…
	Slide 31: Completing the analysis
	Slide 32: Summary of today

