
Algorithm
Design and Analysis

Integer models of computation and integer sorting
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Roadmap for today

• Breaking out of the comparison model, the word-RAM

• Learn about the Counting Sort algorithm

• Learn about the Radix Sort algorithm



Last lecture: Sorting can not be done faster 
than Ω(𝑛 log 𝑛)
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Today: Sorting in 𝑂(𝑛) time

in the comparison model

for bounded
integers in the word RAM model



Formal model of computation

• We’re leaving the comparison model today.  We want to take 
advantage of integer-ness for more performance!!

• Model (word-RAM): 
• We have unlimited constant-time addressable memory (“registers”)
• Each register can store a 𝑤-bit integer (a “word”)
• Reading/writing, arithmetic, logic, bitwise operations on a constant number 

of words takes constant time
• With input size 𝑛, we need 𝑤 ≥ log 𝑛.

• Default assumption is that 𝑤 is large enough that all integers in the 
input to the problem fit in a single word



Implications of the word-RAM

• Adding two 𝑏-bit integers gives a (𝑏 + 1)-bit integer.

• Multiplying two 𝑏-bit integers gives a 2𝑏-bit integer.

• A constant number of these is therefore okay since the result fits in a 
constant number of registers.

• What if we multiply 𝑛 𝑤-bit integers?  We get a Θ(𝑛𝑤)-bit answer! 
This does not fit in a single/constant number of registers!!

• Such an algorithm would therefore take more than Θ(𝑛) time.



Real-life equivalent

int product = 1;

for (int i = 0; i < n; i++)

 product *= a[i];
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product = 1
for i in range(n):
  product *= a[i]

• Too much addition/multiplication can 
quickly lead to overflow

• Python will represent large integers 
for you, but multiplying them is not 
constant time

• The word RAM model is just the theoretical equivalent of watch out for overflow. 
Something you should already be thinking about when designing algorithms.



Do we really need to restrict 𝒘? 

• Suppose we allow reading/writing/instructions on arbitrarily long integers

• This is usually called the unit-cost RAM (as opposed to the word-RAM)



Beating the comparison model

• As a warmup, consider the static searching problem
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Problem (Static search) Given an array of elements 𝑎1, 𝑎2 , … , 𝑎𝑛, with arbitrary 
preprocessing allowed for free, determine the index of a query element 𝑥 if it exists

• What is a lower bound for this problem in the comparison model?



Static searching in the word RAM

• Suppose the array of elements are integers and we are in the word 
RAM model of computation
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• Preprocessing: Build a lookup table: Store 𝑖 at position 𝑎𝑖

• Query: To search for 𝑥, just look in position 𝑥 and see if its not empty



The power of the word RAM

• The fundamental limitation of the comparison model is the fact that 
we can only have binary (YES / NO) decisions!

• The word RAM bestows upon us the power of indirect addressing!

• A single instruction, e.g., lookup element 𝑖 of an array of length 𝑛, can 
have 𝑛 possible different outcomes!
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Integer Sorting
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Problem statement: Integer sorting

• Duplicate keys are allowed!

• Sorting is called stable if the relative order of duplicates is preserved

• Input contains arbitrary elements (not necessarily just integers) with 
integer keys. Sorting must keep data + keys together.
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Problem (Integer sorting) Given an array of elements 𝑎1, 𝑎2 , … , 𝑎𝑛, each 
identified by a (not necessarily unique) integer key called key(𝒂𝒊), output 

an array containing a permutation 𝑎𝜋1
, 𝑎𝜋2

, … , 𝑎𝜋𝑛
 such that

key 𝑎𝜋1
≤ key 𝑎𝜋2

≤ ⋯ ≤ key 𝑎𝜋𝑛



Sorting unique very small integers

• We saw that we can beat the comparison model by taking advantage 
of indirect addressing (i.e., looking up in an array)

• Simpler problem: Suppose keys are guaranteed to be unique integers 
in 1,2, … , 𝑛

Algorithm:
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• Create result array 𝑆 of length 𝑛

• For each 𝑎𝑖, store 𝑆 𝑘𝑒𝑦 𝑎𝑖 = 𝑎𝑖

• 𝑆 is the sorted answer!



Sorting unique small integers

• Now let's increase the size of the keys.  Suppose the input elements 
all have unique keys in range {0,1, … , 𝑢 − 1} (the parameter 𝑢 is 
called the universe of keys)

Algorithm:
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• Create result array 𝑆 of length 𝑢

• For each 𝑎𝑖, store 𝑆 𝑘𝑒𝑦 𝑎𝑖 = 𝑎𝑖

• Filter out the empty elements of 𝑆

• 𝑆 is the sorted answer!



Sorting small integers

• Now let’s remove the assumption that the keys are unique. Suppose 
the input elements have (not necessarily unique) keys in the range 
{0,1, … , 𝑢 − 1}.
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Algorithm (Counting Sort):

• Create a list for every possible key 0,1, … , 𝑢 − 1

• For each 𝑎𝑖, append 𝑎𝑖  to list at index 𝑘𝑒𝑦(𝑎𝑖)

• Concatenate all the lists together.  Elements will be sorted!



Counting Sort

function CountingSort(a : array, key : element → int) {

    let L be an array of u empty lists

    for each element x in a do {

        

    }

    let out be an empty list

    for each integer k in range(0, u) do {

        

    }

    return out

}
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Analysis of Counting Sort
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Theorem: Counting Sort runs in 𝑂(𝑛 + 𝑢) time.

Corollary: Counting Sort sorts keys in {0,1, … , 𝑂 𝑛 } in 𝑂(𝑛) time!



Side quest: Tuple sorting
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Problem (Tuple sorting) Given an array of elements 𝑎1, 𝑎2 , … , 𝑎𝑛, each identified by a 
tuple of keys 𝑘1, 𝑘2, … , 𝑘𝑑 , sort the array lexicographically by the tuple.  That is, the 
array is sorted by 𝑘1, with ties broken by 𝑘2, and ties on that broken by 𝑘3 and so on!

2023, Jan, 17
2023, Jan, 19
2023, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Jan, 16
2024, Jan, 18
2024, Jan, 19
2024, Feb, 06
2024, Feb, 15
2024, Feb, 16
2024, Feb, 18

2024, Feb, 16
2024, Feb, 18
2023, Feb, 06
2024, Jan, 16
2023, Jan, 19
2023, Jan, 17
2024, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Feb, 15
2024, Jan, 19
2024, Jan, 18



Algorithms for tuple sorting

Algorithm (Comparison tuple sort): Just use your favourite 
comparison-sorting algorithm (MergeSort, HeapSort, QuickSort, etc.) 
and compare tuples lexicographically
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• Cost: 𝑂(𝑑 𝑛 log 𝑛) in the comparison model.

• Does not generalize well outside the comparison model



Top-down tuple sorting
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Algorithm (Top-down tuple sort): Sort by the first tuple element, then 
recursively sort the ties on the second tuple element and so on…

SortedSortedSorted

2024, Feb, 16
2024, Feb, 18
2023, Feb, 06
2024, Jan, 16
2023, Jan, 19
2023, Jan, 17
2024, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Feb, 15
2024, Jan, 19
2024, Jan, 18

2023, Feb, 06
2023, Jan, 19
2023, Jan, 17
2023, Feb, 07
2023, Feb, 19
2024, Feb, 16
2024, Feb, 18
2024, Jan, 16
2024, Feb, 06
2024, Feb, 15
2024, Jan, 19
2024, Jan, 18

2023, Jan, 19
2023, Jan, 17
2023, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Jan, 16
2024, Jan, 19
2024, Jan, 18
2024, Feb, 16
2024, Feb, 18
2024, Feb, 06
2024, Feb, 15

2023, Jan, 17
2023, Jan, 19
2023, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Jan, 16
2024, Jan, 18
2024, Jan, 19
2024, Feb, 06
2024, Feb, 15
2024, Feb, 16
2024, Feb, 18



Bottom-up tuple sorting
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Algorithm (Bottom-up tuple sort): Stable sort by the last tuple element, 
then the second last, and so on, finally sorting by the first tuple element.

SortedSorted

2023, Feb, 06
2024, Feb, 06
2023, Feb, 07
2024, Feb, 15
2024, Feb, 16
2024, Jan, 16
2023, Jan, 17
2024, Feb, 18
2024, Jan, 18
2023, Jan, 19
2023, Feb, 19
2024, Jan, 19

2024, Feb, 16
2024, Feb, 18
2023, Feb, 06
2024, Jan, 16
2023, Jan, 19
2023, Jan, 17
2024, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Feb, 15
2024, Jan, 19
2024, Jan, 18

2024, Jan, 16
2023, Jan, 17
2024, Jan, 18
2023, Jan, 19
2024, Jan, 19
2023, Feb, 06
2024, Feb, 06
2023, Feb, 07
2024, Feb, 15
2024, Feb, 16
2024, Feb, 18
2023, Feb, 19

Sorted

2023, Jan, 17
2023, Jan, 19
2023, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Jan, 16
2024, Jan, 18
2024, Jan, 19
2024, Feb, 06
2024, Feb, 15
2024, Feb, 16
2024, Feb, 18



Sorting bigger integers

• Counting sort runs in linear (𝑂(𝑛)) time for 𝑢 = 𝑂(𝑛)

• We want to sort in linear time for bigger values of 𝑢

• Cool idea: Use tuple sort to sort integer keys?
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Question:  Can we represent a big integer as a tuple of small integers 
such that tuple sorting them gives the right answer?

Answer:  Just use their digits!  (Small integers so Counting Sort works)



Bottom-up (LSD) Radix Sort
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SortedSortedSorted

2 3 1 1
1 2 2 1
2 1 2 1
1 1 4 2
4 1 4 2
3 1 3 3
1 4 2 3
1 1 3 3
2 3 1 3
4 4 2 3
4 4 2 3
3 3 3 4

3 1 3 3
1 4 2 3
2 3 1 1
3 3 3 4
1 1 3 3
1 1 4 2
2 3 1 3
4 4 2 3
1 2 2 1
4 1 4 2
4 4 2 3
2 1 2 1

Sorted

2 3 1 1
2 3 1 3
1 2 2 1
2 1 2 1
1 4 2 3
4 4 2 3
4 4 2 3
3 1 3 3
1 1 3 3
3 3 3 4
1 1 4 2
4 1 4 2

2 1 2 1
3 1 3 3
1 1 3 3
1 1 4 2
4 1 4 2
1 2 2 1
2 3 1 1
2 3 1 3
3 3 3 4
1 4 2 3
4 4 2 3
4 4 2 3

1 1 3 3
1 1 4 2
1 2 2 1
1 4 2 3
2 1 2 1
2 3 1 1
2 3 1 3
3 1 3 3
3 3 3 4
4 1 4 2
4 4 2 3
4 4 2 3

Algorithm (LSD Radix Sort): Counting sort by the last digit, then the 
second last, and so on, finally sorting by the first digit.



Bottom-up (LSD) Radix Sort

function RadixSort(a : array, key : element → int) {

    let out = copy of a

    for each i in range(0, num_digits) do {

        

    }

    return out

}
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Analysis of Radix Sort
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Theorem: Radix Sort runs in 𝑂( 𝑛 + 𝑏  log𝑏𝑢) time using base-𝑏



Optimal choice of b?

• How do we optimize 𝑂( 𝑛 + 𝑏  log𝑏𝑢)?

• Bigger base ⇒ fewer iterations (but also slower Counting Sort)
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Optimal base: 𝑏 = 

Running time: 



Radix Sort can sort big(ger) integers
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Theorem: Radix Sort can sort keys in {0,1, … , 𝑂 𝑛𝑐 } in 𝑂(𝑛) time!



Summary of Radix and Counting Sort

Given 𝑛 input elements with integer keys in {0,1, … , 𝑢 − 1},

• Counting Sort runs in 𝑂(𝑛 + 𝑢) time.
• This is linear time whenever 𝑢 = 𝑂(𝑛), i.e., linear-sized keys

• Radix Sort runs in 𝑂(𝑛 log𝑛𝑢) time.
• This is linear time whenever 𝑢 = 𝑂(𝑛𝑐), i.e., polynomial-sized keys!
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Fun fact (Integer sorting is still an open problem): We don’t know whether there exists an 
algorithm that can sort integers of any size in linear time.  The best discovered algorithms 

take 𝑂(𝑛 loglog 𝑛) time (deterministic) or 𝑂 𝑛 loglog 𝑛 expected time.  No known 

lower bound proves that linear-time integer sorting is impossible, but we don’t know!
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