
Algorithm
Design and Analysis

Integer models of computation and integer sorting

1

Roadmap for today

• Breaking out of the comparison model, the word-RAM

• Learn about the Counting Sort algorithm

• Learn about the Radix Sort algorithm

Last lecture: Sorting can not be done faster
than Ω(𝑛 log 𝑛)

3

Today: Sorting in 𝑂(𝑛) time

in the comparison model

for bounded
integers in the word RAM model

Formal model of computation

• We’re leaving the comparison model today. We want to take
advantage of integer-ness for more performance!!

• Model (word-RAM):
• We have unlimited constant-time addressable memory (“registers”)
• Each register can store a 𝑤-bit integer (a “word”)
• Reading/writing, arithmetic, logic, bitwise operations on a constant number

of words takes constant time
• With input size 𝑛, we need 𝑤 ≥ log 𝑛.

• Default assumption is that 𝑤 is large enough that all integers in the
input to the problem fit in a single word

Implications of the word-RAM

• Adding two 𝑏-bit integers gives a (𝑏 + 1)-bit integer.

• Multiplying two 𝑏-bit integers gives a 2𝑏-bit integer.

• A constant number of these is therefore okay since the result fits in a
constant number of registers.

• What if we multiply 𝑛 𝑤-bit integers? We get a Θ(𝑛𝑤)-bit answer!
This does not fit in a single/constant number of registers!!

• Such an algorithm would therefore take more than Θ(𝑛) time.

Real-life equivalent

int product = 1;

for (int i = 0; i < n; i++)

 product *= a[i];

6

product = 1
for i in range(n):
 product *= a[i]

• Too much addition/multiplication can
quickly lead to overflow

• Python will represent large integers
for you, but multiplying them is not
constant time

• The word RAM model is just the theoretical equivalent of watch out for overflow.
Something you should already be thinking about when designing algorithms.

Do we really need to restrict 𝒘?

• Suppose we allow reading/writing/instructions on arbitrarily long integers

• This is usually called the unit-cost RAM (as opposed to the word-RAM)

Beating the comparison model

• As a warmup, consider the static searching problem

8

Problem (Static search) Given an array of elements 𝑎1, 𝑎2 , … , 𝑎𝑛, with arbitrary
preprocessing allowed for free, determine the index of a query element 𝑥 if it exists

• What is a lower bound for this problem in the comparison model?

Static searching in the word RAM

• Suppose the array of elements are integers and we are in the word
RAM model of computation

9

• Preprocessing: Build a lookup table: Store 𝑖 at position 𝑎𝑖

• Query: To search for 𝑥, just look in position 𝑥 and see if its not empty

The power of the word RAM

• The fundamental limitation of the comparison model is the fact that
we can only have binary (YES / NO) decisions!

• The word RAM bestows upon us the power of indirect addressing!

• A single instruction, e.g., lookup element 𝑖 of an array of length 𝑛, can
have 𝑛 possible different outcomes!

10

Integer Sorting

11

Problem statement: Integer sorting

• Duplicate keys are allowed!

• Sorting is called stable if the relative order of duplicates is preserved

• Input contains arbitrary elements (not necessarily just integers) with
integer keys. Sorting must keep data + keys together.

12

Problem (Integer sorting) Given an array of elements 𝑎1, 𝑎2 , … , 𝑎𝑛, each
identified by a (not necessarily unique) integer key called key(𝒂𝒊), output

an array containing a permutation 𝑎𝜋1
, 𝑎𝜋2

, … , 𝑎𝜋𝑛
 such that

key 𝑎𝜋1
≤ key 𝑎𝜋2

≤ ⋯ ≤ key 𝑎𝜋𝑛

Sorting unique very small integers

• We saw that we can beat the comparison model by taking advantage
of indirect addressing (i.e., looking up in an array)

• Simpler problem: Suppose keys are guaranteed to be unique integers
in 1,2, … , 𝑛

Algorithm:

13

• Create result array 𝑆 of length 𝑛

• For each 𝑎𝑖, store 𝑆 𝑘𝑒𝑦 𝑎𝑖 = 𝑎𝑖

• 𝑆 is the sorted answer!

Sorting unique small integers

• Now let's increase the size of the keys. Suppose the input elements
all have unique keys in range {0,1, … , 𝑢 − 1} (the parameter 𝑢 is
called the universe of keys)

Algorithm:

14

• Create result array 𝑆 of length 𝑢

• For each 𝑎𝑖, store 𝑆 𝑘𝑒𝑦 𝑎𝑖 = 𝑎𝑖

• Filter out the empty elements of 𝑆

• 𝑆 is the sorted answer!

Sorting small integers

• Now let’s remove the assumption that the keys are unique. Suppose
the input elements have (not necessarily unique) keys in the range
{0,1, … , 𝑢 − 1}.

15

Algorithm (Counting Sort):

• Create a list for every possible key 0,1, … , 𝑢 − 1

• For each 𝑎𝑖, append 𝑎𝑖 to list at index 𝑘𝑒𝑦(𝑎𝑖)

• Concatenate all the lists together. Elements will be sorted!

Counting Sort

function CountingSort(a : array, key : element → int) {

 let L be an array of u empty lists

 for each element x in a do {

 }

 let out be an empty list

 for each integer k in range(0, u) do {

 }

 return out

}

16

Analysis of Counting Sort

17

Theorem: Counting Sort runs in 𝑂(𝑛 + 𝑢) time.

Corollary: Counting Sort sorts keys in {0,1, … , 𝑂 𝑛 } in 𝑂(𝑛) time!

Side quest: Tuple sorting

18

Problem (Tuple sorting) Given an array of elements 𝑎1, 𝑎2 , … , 𝑎𝑛, each identified by a
tuple of keys 𝑘1, 𝑘2, … , 𝑘𝑑 , sort the array lexicographically by the tuple. That is, the
array is sorted by 𝑘1, with ties broken by 𝑘2, and ties on that broken by 𝑘3 and so on!

2023, Jan, 17
2023, Jan, 19
2023, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Jan, 16
2024, Jan, 18
2024, Jan, 19
2024, Feb, 06
2024, Feb, 15
2024, Feb, 16
2024, Feb, 18

2024, Feb, 16
2024, Feb, 18
2023, Feb, 06
2024, Jan, 16
2023, Jan, 19
2023, Jan, 17
2024, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Feb, 15
2024, Jan, 19
2024, Jan, 18

Algorithms for tuple sorting

Algorithm (Comparison tuple sort): Just use your favourite
comparison-sorting algorithm (MergeSort, HeapSort, QuickSort, etc.)
and compare tuples lexicographically

19

• Cost: 𝑂(𝑑 𝑛 log 𝑛) in the comparison model.

• Does not generalize well outside the comparison model

Top-down tuple sorting

20

Algorithm (Top-down tuple sort): Sort by the first tuple element, then
recursively sort the ties on the second tuple element and so on…

SortedSortedSorted

2024, Feb, 16
2024, Feb, 18
2023, Feb, 06
2024, Jan, 16
2023, Jan, 19
2023, Jan, 17
2024, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Feb, 15
2024, Jan, 19
2024, Jan, 18

2023, Feb, 06
2023, Jan, 19
2023, Jan, 17
2023, Feb, 07
2023, Feb, 19
2024, Feb, 16
2024, Feb, 18
2024, Jan, 16
2024, Feb, 06
2024, Feb, 15
2024, Jan, 19
2024, Jan, 18

2023, Jan, 19
2023, Jan, 17
2023, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Jan, 16
2024, Jan, 19
2024, Jan, 18
2024, Feb, 16
2024, Feb, 18
2024, Feb, 06
2024, Feb, 15

2023, Jan, 17
2023, Jan, 19
2023, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Jan, 16
2024, Jan, 18
2024, Jan, 19
2024, Feb, 06
2024, Feb, 15
2024, Feb, 16
2024, Feb, 18

Bottom-up tuple sorting

21

Algorithm (Bottom-up tuple sort): Stable sort by the last tuple element,
then the second last, and so on, finally sorting by the first tuple element.

SortedSorted

2023, Feb, 06
2024, Feb, 06
2023, Feb, 07
2024, Feb, 15
2024, Feb, 16
2024, Jan, 16
2023, Jan, 17
2024, Feb, 18
2024, Jan, 18
2023, Jan, 19
2023, Feb, 19
2024, Jan, 19

2024, Feb, 16
2024, Feb, 18
2023, Feb, 06
2024, Jan, 16
2023, Jan, 19
2023, Jan, 17
2024, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Feb, 15
2024, Jan, 19
2024, Jan, 18

2024, Jan, 16
2023, Jan, 17
2024, Jan, 18
2023, Jan, 19
2024, Jan, 19
2023, Feb, 06
2024, Feb, 06
2023, Feb, 07
2024, Feb, 15
2024, Feb, 16
2024, Feb, 18
2023, Feb, 19

Sorted

2023, Jan, 17
2023, Jan, 19
2023, Feb, 06
2023, Feb, 07
2023, Feb, 19
2024, Jan, 16
2024, Jan, 18
2024, Jan, 19
2024, Feb, 06
2024, Feb, 15
2024, Feb, 16
2024, Feb, 18

Sorting bigger integers

• Counting sort runs in linear (𝑂(𝑛)) time for 𝑢 = 𝑂(𝑛)

• We want to sort in linear time for bigger values of 𝑢

• Cool idea: Use tuple sort to sort integer keys?

22

Question: Can we represent a big integer as a tuple of small integers
such that tuple sorting them gives the right answer?

Answer: Just use their digits! (Small integers so Counting Sort works)

Bottom-up (LSD) Radix Sort

23

SortedSortedSorted

2 3 1 1
1 2 2 1
2 1 2 1
1 1 4 2
4 1 4 2
3 1 3 3
1 4 2 3
1 1 3 3
2 3 1 3
4 4 2 3
4 4 2 3
3 3 3 4

3 1 3 3
1 4 2 3
2 3 1 1
3 3 3 4
1 1 3 3
1 1 4 2
2 3 1 3
4 4 2 3
1 2 2 1
4 1 4 2
4 4 2 3
2 1 2 1

Sorted

2 3 1 1
2 3 1 3
1 2 2 1
2 1 2 1
1 4 2 3
4 4 2 3
4 4 2 3
3 1 3 3
1 1 3 3
3 3 3 4
1 1 4 2
4 1 4 2

2 1 2 1
3 1 3 3
1 1 3 3
1 1 4 2
4 1 4 2
1 2 2 1
2 3 1 1
2 3 1 3
3 3 3 4
1 4 2 3
4 4 2 3
4 4 2 3

1 1 3 3
1 1 4 2
1 2 2 1
1 4 2 3
2 1 2 1
2 3 1 1
2 3 1 3
3 1 3 3
3 3 3 4
4 1 4 2
4 4 2 3
4 4 2 3

Algorithm (LSD Radix Sort): Counting sort by the last digit, then the
second last, and so on, finally sorting by the first digit.

Bottom-up (LSD) Radix Sort

function RadixSort(a : array, key : element → int) {

 let out = copy of a

 for each i in range(0, num_digits) do {

 }

 return out

}

24

Analysis of Radix Sort

25

Theorem: Radix Sort runs in 𝑂(𝑛 + 𝑏 log𝑏𝑢) time using base-𝑏

Optimal choice of b?

• How do we optimize 𝑂(𝑛 + 𝑏 log𝑏𝑢)?

• Bigger base ⇒ fewer iterations (but also slower Counting Sort)

26

Optimal base: 𝑏 =

Running time:

Radix Sort can sort big(ger) integers

27

Theorem: Radix Sort can sort keys in {0,1, … , 𝑂 𝑛𝑐 } in 𝑂(𝑛) time!

Summary of Radix and Counting Sort

Given 𝑛 input elements with integer keys in {0,1, … , 𝑢 − 1},

• Counting Sort runs in 𝑂(𝑛 + 𝑢) time.
• This is linear time whenever 𝑢 = 𝑂(𝑛), i.e., linear-sized keys

• Radix Sort runs in 𝑂(𝑛 log𝑛𝑢) time.
• This is linear time whenever 𝑢 = 𝑂(𝑛𝑐), i.e., polynomial-sized keys!

28

Fun fact (Integer sorting is still an open problem): We don’t know whether there exists an
algorithm that can sort integers of any size in linear time. The best discovered algorithms

take 𝑂(𝑛 loglog 𝑛) time (deterministic) or 𝑂 𝑛 loglog 𝑛 expected time. No known

lower bound proves that linear-time integer sorting is impossible, but we don’t know!

	Slide 1: Algorithm Design and Analysis
	Slide 2: Roadmap for today
	Slide 3
	Slide 4: Formal model of computation
	Slide 5: Implications of the word-RAM
	Slide 6: Real-life equivalent
	Slide 7: Do we really need to restrict bold italic w?
	Slide 8: Beating the comparison model
	Slide 9: Static searching in the word RAM
	Slide 10: The power of the word RAM
	Slide 11: Integer Sorting
	Slide 12: Problem statement: Integer sorting
	Slide 13: Sorting unique very small integers
	Slide 14: Sorting unique small integers
	Slide 15: Sorting small integers
	Slide 16: Counting Sort
	Slide 17: Analysis of Counting Sort
	Slide 18: Side quest: Tuple sorting
	Slide 19: Algorithms for tuple sorting
	Slide 20: Top-down tuple sorting
	Slide 21: Bottom-up tuple sorting
	Slide 22: Sorting bigger integers
	Slide 23: Bottom-up (LSD) Radix Sort
	Slide 24: Bottom-up (LSD) Radix Sort
	Slide 25: Analysis of Radix Sort
	Slide 26: Optimal choice of b?
	Slide 27: Radix Sort can sort big(ger) integers
	Slide 28: Summary of Radix and Counting Sort

