>
Algorithm
Design and Analysis

Concrete Models and Lower Bounds

Roadmap for today

* Formal models of computation
* We will work predominantly with the comparison model

* Lower bounds for finding the maximum element in an array
* Introducing two techniques: the adversary technique and the decision tree

* A lower bound for sorting in the comparison model
* Introducing the information-theoretic lower bound technique

* Another example of a lower bound in the comparison model

e Showcasing a common trick: Finding a hard subset of inputs then using
combinatorics to count the number of required outputs, then applying the
information-theoretic lower bound

Formal models of computation

 When theoretically analyzing algorithms, we don’t consider their
performance on a particular piece of hardware
e E.g., how fast is this algorithm on an i9-14900K with DDR5 RAM? Who cares :)

* Instead, we define a model of computation which specifies:

* Exactly what operations are permitted
 How much each operation costs

 E.g., a Turing Machine is a model of computation

* Allowed operations: Read/write/move tape
* Cost model: all operations cost 1

What is the best model?

* No such thing... it depends

* It depends on the setting. Are you designing a single-threaded

algorithm, a parallel algorithm, an algorithm for GPUs, an algorithm
that will work on a gigantic dataset...

* It also depends on your goal. Are you trying to predict the

performance of an algorithm in a particular scenario or are you trying
to prove a lower bound?

Today’s models

* The Comparison Model (as seen in Lecture 1)
* Input to the algorithm consists of an array of n items in some order
* The algorithm may perform comparisons (is a; < a;?) at a cost of 1
* Copying/moving items is free
* The items are of an arbitrary type. We are not allowed to assume a type
e E.g., the items can not be assumed to be numbers

* This means we can not add, multiply, XOR the items
* We also can not use hashing, or use elements as array indices, etc.

Today’s goals

e Devise lower bounds for problemes, i.e., prove that certain problems can not be
solved in under a certain cost.

Definition (Lower bound): If we say that a specific problem on inputs of size n has
a lower bound of g(n), we mean that for any algorithm A that solves the
problem, there exists some input of size n for which the cost of A is at least g(n).

Note: A lower bound does not mean that every input requires cost at
least g(n), only that at least one input does. In other words, it means the
worst-case cost is at least g(n), but the best-case could be cheaper.

Select-max

Problem: Given an array of n elements, return the maximum element.

Algorithm: Scan left-to-right keeping track of the maximum so far

Cost: n — 1 comparisons

Question: How few comparisons could any algorithm possibly do? Is it
possible to do fewer thann — 17

Weak lower bound

Theorem: Any deterministic algorithm for select-max costs at least n/2 comparisons

Proof: Q. not ‘ovched
L
an wr Can Forc 3 M&

Q/;g;ﬂ&%% IL@ 9’{(/{1
b wrons Ce Swer,

Stronger lower bound

Theorem: Any deterministic algorithm for select-max costs at least n — 1 comparisons

Proof: é,ﬂ&?ﬁ,% WHW[Qm @@e)Qow @M
wa,}ﬁﬁﬂ;fbt/]

0
X/;@?(qu&)

= Cour ccled —> hayve yn—
ey es 9

Adversary arguments

* We proved the lower bound using an adversary argument

* Given any algorithm that performs “too few” comparisons, we argued
that we can always construct an input on which it must give the
wrong answer.

* We are playing the role of an adversary trying to “break” the
algorithm!

* Remember that our argument must break every algorithm that we
are trying to rule out, we can not assume a specific algorithm.

10

Another technique: Decision Trees

* Consider the set of all possible outputs. Before the algorithm makes
any comparisons, they all could be the answer.

* After each comparison, some of the possibilities are ruled out

Possible answers: Comparison performed: .
max = a Possible answers:
max = a, (a, < aq) ==TRUE max = aq
max = dj max = dj

* We can represent any specific comparison-based algorithm as a

e . ° e e —8—
decision tree.

S ——
11

Example decision tree

Possible answers:

max = a,
max = a, { az < a, J
max = dz

—_—

TRUE FALSE

Possible answers:
max = a, a3 < ai
max = as

Possible answers:
a, < asz max = dp
max = as

—————r
TRUE FALSE TRUE FALSE

Output 1 Output 3 Output 3 Output 2
f-—-"--.. L

12

Decision tree implications

* The cost of an algorithm on a particular input is the depth of the leaf
node that that input leads to in the tree
[Lomgeg f J

* Therefore, the worst-case case of the algorithm is...
P@W QO NOWT

* Remember that a particular decision tree corresponds to a particular
algorithm (its just a way of writing down the algorithm aﬁ‘w@%eqh@ivgto
pseudocode or plain English)

* A lower-bound proof using decision trees must thereforeé%ﬂ‘e}lhat every
possible decision tree for the problem has at least a certain height

13

Proof via decision trees

Theorem: Any deterministic a or select-max costs Ieast n—1 90#;ar|sons

‘Pa;(/ 0 Ml

\% S Poss/blo mc%f}
= (3

Proof:

Question break

Sorting in the comparison model

* The comparison model is widely used to analyze sorting algorithms
* You don’t get to assume that the data are integers, or numbers, so the
algorithms will be extremely general. They can sort anything!

* We know how to achieve O(n log n) comparisons: Quicksort
(deterministic from Lecture 1), Mergesort, Heapsort.

e Can we do better?

16

Input/output of comparison sorting

* Simplify by assuming that all the elements are distinct (no duplicates)
‘._____-—-—-=-—

* The input is an array of elements in some initial order
ai,dy,ds, ..., Ay

* The output is a permutation of the input elements in sorted order
an(l) < an(z) < < an(n)

=1

Warning!: Defining the “output” of a comparison sort is extremely subtle
if we want to correctly prove lower bounds. We must be very careful.

17

Understanding “output”

* Suppose we ask an algorithm to sort [c a,b,d] and [b d,a, c]

- These both sort to [a, b, c, d]. Are these the same output?

No
< H-Molc BEBA

Input: [a,, a;, as, a,) Input: [a,, ay, as, a,]

|

Output: |a,, a3, a,,a,] Output: [as3, aq,ay,a,]

18

Understanding “output”

e Suppose we ask an algorithm to sort [c,a, b,d]| and [m, d, e, z|
* These sortto [a, b, c,d] and |d, e, m, z]. Are these the same output?

Yes
BH DD mB -l
Input: [ay,a, as, a,] Input: |[a,, ay, as, a,]

| % |

Output: |a,, a3, a,,a,] Output: [a,, a3, aq,a,]

19

Sorting lower bound

Theorem: Any deterministic comparison sorting algorithm must perform at least
log,(n!) comparisons in the worst case.

 Different technique this time. Instead of an adversary, we are going
to use information theory

* This critically relies on how we define the input/output

* Remember that we must prove this fact for every possible algorithm,
not just one.

20

Proof

e Remember, the algorithm is deterministic! Its behaviour is
determined entirely by the results of the comparisons.

* If a deterministic algorithm makes ¢ comparisons, how many distinct
outputs can it possibly produce?

4 N

QC

Proof godl n! fermsl &

* How many distinct inputs consisting of n unique elements does the
algorithm need to be able to sort?

.

e Can two distinct inputs consisting of unique elements ever be sorted

by the same output?

22

Proof

* Therefore, a correct sorting algorithm for sorting n unique elements
must be capable of producing how many distinct outputs?

HI
. érefape\..
acore # c
— > mi—%(@m/wé 2
—_— ﬂ(A; ﬁ>£7c’/l072 é

23 e

What on earth is log, (n!)
nal { =z fﬁﬁ %;

* A loose bound:

log,n! =log,n +log,(n — 1) + --- + log,(1)

{31 o 'j/ J<log2n+log2(n—1)+ -+ log,(1) < {” log 4 J

'I%htérzlﬁ’ﬁdﬂd_‘ /(irking s;_aéﬁ@d%matl% "ts-—-:—_—__—/—?“‘%

log,(n!) = nlog,n —nlog,e + O(log,n)

(—) <n<n"
e

24

Another example

Problem (Sorting D distinct items): Consider the problem of sorting an array of n
items, but we are guaranteed that there are at most D distinct elements (where
1 <D < n),i.e., the array may contain many duplicates.

T

Intuition check: Do we expect this to be more expensive or cheaper to
solve than the previous problem? rglE‘ ¥ aleo d o

Soavince wiyh ot
[— hec; IDG /! J mcj& D d?sT—ﬂ/?S,ThML
/’-a)\ Q/DE,J‘ __Q_G’I)mao) Lomps,
Any deterministic comparison sorting algorithm on n items where there
are at most D distinct elements requires Q(n log(D)) comparisons in the worst case.

25

Another example

* How many outputs does a correct algorithm need to be able to
produce to solve this problem?

* This seems much harder to reason about than the first problem, where we
had n! distinct inputs each requiring a distinct output

aab
abb

‘ Number of required outputs #

both sorted by [a1; ay, a3] number of possible inputs

Useful observation: Suppose we focus on just a subset of possible inputs to the
problem and prove a lower bound on the cost of solving inputs from that set. Then
this lower bound applies to the entire problem.

26

Picking a good set of inputs

So, we want to pick a set of inputs that:

* Requires a lot of outputs. To use the information-theoretic lower
bound, we want to show that lots of outputs are required.

* Usually, we will do this by counting the number of inputs in the set and then
arguing about the relationship between the number of inputs and output

e Often (but not always) we will argue that each input requires a distinct output,
so the number of inputs lower bounds the number of required outputs

* |s simple enough that we can count the number of required outputs.

* We will try to describe a set of inputs that has some nice combinatorial
structure so we can count it using counting techniques from concepts

27

Picking a good set of inputs

* We need to describe a family of inputs on n elements where there
are at most D distinct elements.

e Goals:

e Simple to describe and count
* Requires a distinct output for each input

Remember: A permutation on a list of distinct elements
has a unique inverse (i.e., a unique output that sorts it)

28

Arguing distinctness

» Suppose | take two permutationson 1,2, ..., D (i.e., one copy of each
distinct input element)
L 2 | 2

12,..D |12 ...D Y [
CX’ B 22

Em

/

()

* |s there a unique output (permutation) that sorts one of these? NO

. J

()

e Can a single output (permutation) sort two of these? NO

. J

Proof: Since the elements in each half are distinct, if | swap any
of them, it goes to the wrong place in the output permutation

29

Arguing distinctness

» Suppose | take two permutationson 1,2, ..., D (i.e., one copy of each
distinct input element)

213/
D 1,2,...,D

<

e Can a single output (permutation) sort two of these? NO

Number of required outputs =
number of possible inputs

30

Constructing our input family

* We will construct a family of inputs by concatenating n/D many
permutationsof 1, ..., D

1,2,..,D 1,2,...,D e o o 1,2,...,D

X%~ 5 3

* By our previous slide, each of these requires a different output to sort,
so number of required outputs = number of inputs in this family

(b!)"

31

The lower bound

n
* This family contains (D!)Dp inputs, each requiang a different output, so

sorting everything in this family requires (D!)D outputs

* Our information-theoretic lower bound argument therefore gives us a
lower bound of...

-

Y
(O
, <> (D
< > & losh! x j Dlosd)
&~ N log D .

Summary of lower-bound techniques

* Adversary: Show that you can construct an input to “break” the
algorithm if it performs too few comparisons

* Decision Tree: Model any algorithm for the problem as a binary tree
of possible outputs and lower bound the height of the tree

* Information-theoretic: Count the minimum number of necessary
distinct outputs that the algorithm must be able to produce

* Sometimes we need to find a hard subset of the input and show a lower
bound on that, since we can’t figure out how to count the entire output set

Important result: Sorting requires log,n! = @(n log n) comparisons.

33

	Slide 1: Algorithm Design and Analysis
	Slide 2: Roadmap for today
	Slide 3: Formal models of computation
	Slide 4: What is the best model?
	Slide 5: Today’s models
	Slide 6: Today’s goals
	Slide 7: Select-max
	Slide 8: Weak lower bound
	Slide 9: Stronger lower bound
	Slide 10: Adversary arguments
	Slide 11: Another technique: Decision Trees
	Slide 12: Example decision tree
	Slide 13: Decision tree implications
	Slide 14: Proof via decision trees
	Slide 15: Question break
	Slide 16: Sorting in the comparison model
	Slide 17: Input/output of comparison sorting
	Slide 18: Understanding “output”
	Slide 19: Understanding “output”
	Slide 20: Sorting lower bound
	Slide 21: Proof
	Slide 22: Proof
	Slide 23: Proof
	Slide 24: What on earth is log sub bold 2 , open paren bold italic n factorial close paren
	Slide 25: Another example
	Slide 26: Another example
	Slide 27: Picking a good set of inputs
	Slide 28: Picking a good set of inputs
	Slide 29: Arguing distinctness
	Slide 30: Arguing distinctness
	Slide 31: Constructing our input family
	Slide 32: The lower bound
	Slide 33: Summary of lower-bound techniques

