
Algorithm
Design and Analysis

Concrete Models and Lower Bounds

1

Roadmap for today

• Formal models of computation
• We will work predominantly with the comparison model

• Lower bounds for finding the maximum element in an array
• Introducing two techniques: the adversary technique and the decision tree

• A lower bound for sorting in the comparison model
• Introducing the information-theoretic lower bound technique

• Another example of a lower bound in the comparison model
• Showcasing a common trick: Finding a hard subset of inputs then using

combinatorics to count the number of required outputs, then applying the
information-theoretic lower bound

2

Formal models of computation

• When theoretically analyzing algorithms, we don’t consider their
performance on a particular piece of hardware
• E.g., how fast is this algorithm on an i9-14900K with DDR5 RAM? Who cares :)

• Instead, we define a model of computation which specifies:
• Exactly what operations are permitted

• How much each operation costs

• E.g., a Turing Machine is a model of computation
• Allowed operations: Read/write/move tape

• Cost model: all operations cost 1

3

What is the best model?

• No such thing… it depends

• It depends on the setting. Are you designing a single-threaded
algorithm, a parallel algorithm, an algorithm for GPUs, an algorithm
that will work on a gigantic dataset…

• It also depends on your goal. Are you trying to predict the
performance of an algorithm in a particular scenario or are you trying
to prove a lower bound?

4

Today’s models

• The Comparison Model (as seen in Lecture 1)
• Input to the algorithm consists of an array of 𝑛 items in some order

• The algorithm may perform comparisons (is 𝑎𝑖 < 𝑎𝑗?) at a cost of 1

• Copying/moving items is free

• The items are of an arbitrary type. We are not allowed to assume a type
• E.g., the items can not be assumed to be numbers

• This means we can not add, multiply, XOR the items

• We also can not use hashing, or use elements as array indices, etc.

5

Today’s goals

• Devise lower bounds for problems, i.e., prove that certain problems can not be
solved in under a certain cost.

Definition (Lower bound): If we say that a specific problem on inputs of size 𝑛 has
a lower bound of 𝑔(𝑛), we mean that for any algorithm A that solves the

problem, there exists some input of size 𝑛 for which the cost of A is at least 𝑔 𝑛 .

Note: A lower bound does not mean that every input requires cost at
least 𝑔(𝑛), only that at least one input does. In other words, it means the

worst-case cost is at least 𝑔 𝑛 , but the best-case could be cheaper.

6

Select-max

Cost: 𝑛 − 1 comparisons

Problem: Given an array of 𝑛 elements, return the maximum element.

Algorithm: Scan left-to-right keeping track of the maximum so far

Question: How few comparisons could any algorithm possibly do? Is it
possible to do fewer than 𝑛 − 1 ?

7

Weak lower bound

Theorem: Any deterministic algorithm for select-max costs at least 𝑛/2 comparisons

Proof:

8

Stronger lower bound

Theorem: Any deterministic algorithm for select-max costs at least 𝑛 − 1 comparisons

Proof:

9

Adversary arguments

• We proved the lower bound using an adversary argument

• Given any algorithm that performs “too few” comparisons, we argued
that we can always construct an input on which it must give the
wrong answer.

• We are playing the role of an adversary trying to “break” the
algorithm!

• Remember that our argument must break every algorithm that we
are trying to rule out, we can not assume a specific algorithm.

10

Another technique: Decision Trees

• Consider the set of all possible outputs. Before the algorithm makes
any comparisons, they all could be the answer.

• After each comparison, some of the possibilities are ruled out

• We can represent any specific comparison-based algorithm as a
decision tree.

Possible answers:
max = 𝑎1
max = 𝑎2

max = 𝑎3

(𝑎2 < 𝑎1) == TRUE

Possible answers:
max = 𝑎1

max = 𝑎3

Comparison performed:

11

Example decision tree

Possible answers:

max = 𝑎1
max = 𝑎2

max = 𝑎3

𝒂𝟐 < 𝒂𝟏

Output 1 Output 3 Output 3 Output 2

TRUE FALSE

TRUE FALSE TRUE FALSE

Possible answers:

max = 𝑎1
max = 𝑎3

Possible answers:
max = 𝑎2
max = 𝑎3

𝒂𝟑 < 𝒂𝟏 𝒂𝟐 < 𝒂𝟑

12

Decision tree implications

• The cost of an algorithm on a particular input is the depth of the leaf
node that that input leads to in the tree

• Therefore, the worst-case case of the algorithm is…

• Remember that a particular decision tree corresponds to a particular
algorithm (its just a way of writing down the algorithm as an alternative to
pseudocode or plain English)

• A lower-bound proof using decision trees must therefore argue that every
possible decision tree for the problem has at least a certain height

13

Proof via decision trees

Theorem: Any deterministic algorithm for select-max costs at least 𝑛 − 1 comparisons

Proof:

14

Question break

15

Sorting in the comparison model

• The comparison model is widely used to analyze sorting algorithms
• You don’t get to assume that the data are integers, or numbers, so the

algorithms will be extremely general. They can sort anything!

• We know how to achieve 𝑂(𝑛 log 𝑛) comparisons: Quicksort
(deterministic from Lecture 1), Mergesort, Heapsort.

• Can we do better?

16

Input/output of comparison sorting

• Simplify by assuming that all the elements are distinct (no duplicates)

• The input is an array of elements in some initial order
𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛

• The output is a permutation of the input elements in sorted order
𝑎𝜋(1) < 𝑎𝜋(2) < ⋯ < 𝑎𝜋(𝑛)

Warning!: Defining the “output” of a comparison sort is extremely subtle
if we want to correctly prove lower bounds. We must be very careful.

17

Understanding “output”

• Suppose we ask an algorithm to sort 𝑐, 𝑎, 𝑏, 𝑑 and 𝑏, 𝑑, 𝑎, 𝑐

• These both sort to 𝑎, 𝑏, 𝑐, 𝑑 . Are these the same output?

No

𝑎1, 𝑎2, 𝑎3, 𝑎4

c a b d

Input:

𝑎2, 𝑎3, 𝑎1, 𝑎4Output:

𝑎1, 𝑎2, 𝑎3, 𝑎4

b d a c

Input:

𝑎3, 𝑎1, 𝑎4, 𝑎2Output:

18

Understanding “output”

• Suppose we ask an algorithm to sort 𝑐, 𝑎, 𝑏, 𝑑 and 𝑚, 𝑑, 𝑒, 𝑧

• These sort to 𝑎, 𝑏, 𝑐, 𝑑 and 𝑑, 𝑒, 𝑚, 𝑧 . Are these the same output?

Yes

𝑎1, 𝑎2, 𝑎3, 𝑎4

c a b d

Input:

𝑎2, 𝑎3, 𝑎1, 𝑎4Output:

𝑎1, 𝑎2, 𝑎3, 𝑎4

m d e z

Input:

𝑎2, 𝑎3, 𝑎1, 𝑎4Output:

19

Sorting lower bound

• Different technique this time. Instead of an adversary, we are going
to use information theory

• This critically relies on how we define the input/output

• Remember that we must prove this fact for every possible algorithm,
not just one.

Theorem: Any deterministic comparison sorting algorithm must perform at least
log2(𝑛!) comparisons in the worst case.

20

Proof

• Remember, the algorithm is deterministic! Its behaviour is
determined entirely by the results of the comparisons.

• If a deterministic algorithm makes 𝒄 comparisons, how many distinct
outputs can it possibly produce?

21

Proof

• How many distinct inputs consisting of 𝑛 unique elements does the
algorithm need to be able to sort?

• Can two distinct inputs consisting of unique elements ever be sorted
by the same output?

22

Proof

• Therefore, a correct sorting algorithm for sorting 𝑛 unique elements
must be capable of producing how many distinct outputs?

• Therefore…

23

What on earth is log𝟐(𝒏!)

• A loose bound:

log2𝑛! = log2𝑛 + log2 𝑛 − 1 + ⋯ + log2 1

< log2𝑛 + log2 𝑛 − 1 + ⋯ + log2 1 <

• Tighter bounds (Stirling’s approximation):

log2 𝑛! = 𝑛 log2𝑛 − 𝑛 log2𝑒 + 𝑂(log2𝑛)

𝑛

𝑒

𝑛

≤ 𝑛! ≤ 𝑛𝑛
Very useful!

24

Another example

Intuition check: Do we expect this to be more expensive or cheaper to
solve than the previous problem?

Problem (Sorting 𝑫 distinct items): Consider the problem of sorting an array of 𝑛
items, but we are guaranteed that there are at most 𝐷 distinct elements (where

1 ≤ 𝐷 ≤ 𝑛), i.e., the array may contain many duplicates.

Theorem: Any deterministic comparison sorting algorithm on 𝑛 items where there
are at most 𝐷 distinct elements requires Ω(𝑛 log 𝐷) comparisons in the worst case.

25

Another example

• How many outputs does a correct algorithm need to be able to
produce to solve this problem?
• This seems much harder to reason about than the first problem, where we

had 𝑛! distinct inputs each requiring a distinct output

Useful observation: Suppose we focus on just a subset of possible inputs to the
problem and prove a lower bound on the cost of solving inputs from that set. Then

this lower bound applies to the entire problem.

26

𝒂 𝒂 𝒃

𝒂 𝒃 𝒃
𝑎1, 𝑎2, 𝑎3both sorted by Number of required outputs ≠

number of possible inputs

Picking a good set of inputs

So, we want to pick a set of inputs that:

• Requires a lot of outputs. To use the information-theoretic lower
bound, we want to show that lots of outputs are required.
• Usually, we will do this by counting the number of inputs in the set and then

arguing about the relationship between the number of inputs and output

• Often (but not always) we will argue that each input requires a distinct output,
so the number of inputs lower bounds the number of required outputs

• Is simple enough that we can count the number of required outputs.
• We will try to describe a set of inputs that has some nice combinatorial

structure so we can count it using counting techniques from concepts

27

Picking a good set of inputs

• We need to describe a family of inputs on 𝑛 elements where there
are at most 𝐷 distinct elements.

• Goals:
• Simple to describe and count

• Requires a distinct output for each input

28

Remember: A permutation on a list of distinct elements
has a unique inverse (i.e., a unique output that sorts it)

Arguing distinctness

• Suppose I take two permutations on 1,2, … , 𝐷 (i.e., one copy of each
distinct input element)

29

1,2, … , 𝐷 1,2, … , 𝐷

• Is there a unique output (permutation) that sorts one of these?

• Can a single output (permutation) sort two of these?

Proof: Since the elements in each half are distinct, if I swap any
of them, it goes to the wrong place in the output permutation

Arguing distinctness

• Suppose I take two permutations on 1,2, … , 𝐷 (i.e., one copy of each
distinct input element)

30

1,2, … , 𝐷 1,2, … , 𝐷

• Can a single output (permutation) sort two of these? NO

Number of required outputs =
number of possible inputs

Constructing our input family

• We will construct a family of inputs by concatenating 𝑛/𝐷 many
permutations of 1, … , 𝐷

31

1,2, … , 𝐷 1,2, … , 𝐷 1,2, … , 𝐷

• By our previous slide, each of these requires a different output to sort,
so number of required outputs = number of inputs in this family

The lower bound

32

• This family contains 𝐷!
𝑛

𝐷 inputs, each requiring a different output, so

sorting everything in this family requires 𝐷!
𝑛

𝐷 outputs

• Our information-theoretic lower bound argument therefore gives us a
lower bound of…

Summary of lower-bound techniques

• Adversary: Show that you can construct an input to “break” the
algorithm if it performs too few comparisons

• Decision Tree: Model any algorithm for the problem as a binary tree
of possible outputs and lower bound the height of the tree

• Information-theoretic: Count the minimum number of necessary
distinct outputs that the algorithm must be able to produce
• Sometimes we need to find a hard subset of the input and show a lower

bound on that, since we can’t figure out how to count the entire output set

Important result: Sorting requires 𝐥𝐨𝐠𝟐𝒏! = 𝚯(𝒏 𝒍𝒐𝒈 𝒏) comparisons.

33

	Slide 1: Algorithm Design and Analysis
	Slide 2: Roadmap for today
	Slide 3: Formal models of computation
	Slide 4: What is the best model?
	Slide 5: Today’s models
	Slide 6: Today’s goals
	Slide 7: Select-max
	Slide 8: Weak lower bound
	Slide 9: Stronger lower bound
	Slide 10: Adversary arguments
	Slide 11: Another technique: Decision Trees
	Slide 12: Example decision tree
	Slide 13: Decision tree implications
	Slide 14: Proof via decision trees
	Slide 15: Question break
	Slide 16: Sorting in the comparison model
	Slide 17: Input/output of comparison sorting
	Slide 18: Understanding “output”
	Slide 19: Understanding “output”
	Slide 20: Sorting lower bound
	Slide 21: Proof
	Slide 22: Proof
	Slide 23: Proof
	Slide 24: What on earth is log sub bold 2 , open paren bold italic n factorial close paren
	Slide 25: Another example
	Slide 26: Another example
	Slide 27: Picking a good set of inputs
	Slide 28: Picking a good set of inputs
	Slide 29: Arguing distinctness
	Slide 30: Arguing distinctness
	Slide 31: Constructing our input family
	Slide 32: The lower bound
	Slide 33: Summary of lower-bound techniques

