

Algorithm Design and Analysis

Concrete Models and Lower Bounds

Roadmap for today

- Formal models of computation
 - We will work predominantly with the comparison model
- Lower bounds for finding the maximum element in an array
 - Introducing two techniques: the adversary technique and the decision tree
- A lower bound for sorting in the comparison model
 - Introducing the *information-theoretic lower bound* technique
- Another example of a lower bound in the comparison model
 - Showcasing a common trick: Finding a hard subset of inputs then using combinatorics to count the number of required outputs, then applying the information-theoretic lower bound

Formal models of computation

- When theoretically analyzing algorithms, we don't consider their performance on a particular piece of hardware
 - E.g., how fast is this algorithm on an i9-14900K with DDR5 RAM? Who cares:)
- Instead, we define a model of computation which specifies:
 - Exactly what operations are permitted
 - How much each operation costs
- E.g., a *Turing Machine* is a model of computation
 - Allowed operations: Read/write/move tape
 - Cost model: all operations cost 1

What is the best model?

- No such thing... it depends
- It depends on the setting. Are you designing a single-threaded algorithm, a parallel algorithm, an algorithm for GPUs, an algorithm that will work on a gigantic dataset...
- It also depends on your goal. Are you trying to predict the performance of an algorithm in a particular scenario or are you trying to prove a *lower bound*?

Today's models

- The Comparison Model (as seen in Lecture 1)
 - Input to the algorithm consists of an array of n items in some order
 - The algorithm may perform comparisons (is $a_i < a_j$?) at a cost of 1
 - Copying/moving items is free
 - The items are of an arbitrary type. We are not allowed to assume a type
 - E.g., the items can not be assumed to be numbers
 - This means we can not add, multiply, XOR the items
 - We also can not use hashing, or use elements as array indices, etc.

Today's goals

 Devise lower bounds for problems, i.e., prove that certain problems can not be solved in under a certain cost.

Definition (Lower bound): If we say that a specific problem on inputs of size n has a lower bound of g(n), we mean that for **any algorithm** A that solves the problem, **there exists some input** of size n for which the cost of A is **at least** g(n).

Note: A lower bound **does not** mean that **every input** requires cost at least g(n), only that **at least one** input does. In other words, it means the **worst-case cost** is at least g(n), but the best-case could be cheaper.

Select-max

Problem: Given an array of n elements, return the maximum element.

Algorithm: Scan left-to-right keeping track of the maximum so far

Cost: n-1 comparisons

Question: How few comparisons could any algorithm possibly do? Is it possible to do fewer than n-1?

Weak lower bound

Theorem: Any deterministic algorithm for select-max costs at least n/2 comparisons

Proof:

ai not touched then we can force the alsorithm to sive the wrong auswer.

Stronger lower bound

Theorem: Any deterministic algorithm for select-max costs at least n-1 comparisons

Graph with an edge for each **Proof:** Comjanison => coun ected => have 2 n-1

Adversary arguments

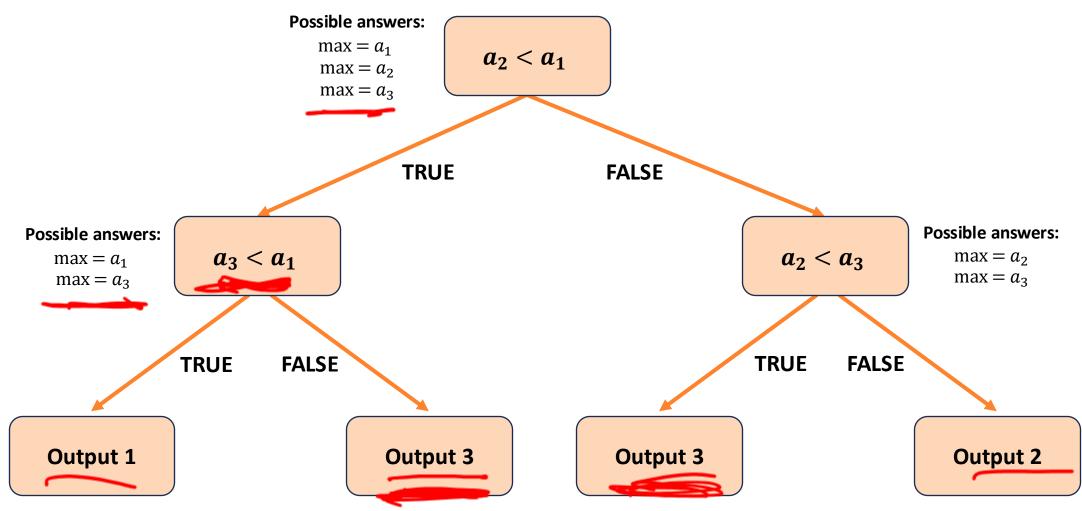
- We proved the lower bound using an adversary argument
- Given any algorithm that performs "too few" comparisons, we argued that we can always construct an input on which it must give the wrong answer.
- We are playing the role of an *adversary* trying to "break" the algorithm!
- Remember that our argument must break *every algorithm* that we are trying to rule out, we can not assume a specific algorithm.

Another technique: Decision Trees

- Consider the set of all possible outputs. Before the algorithm makes any comparisons, they all could be the answer.
- After each comparison, some of the possibilities are ruled out

We can represent any specific comparison-based algorithm as a decision tree.

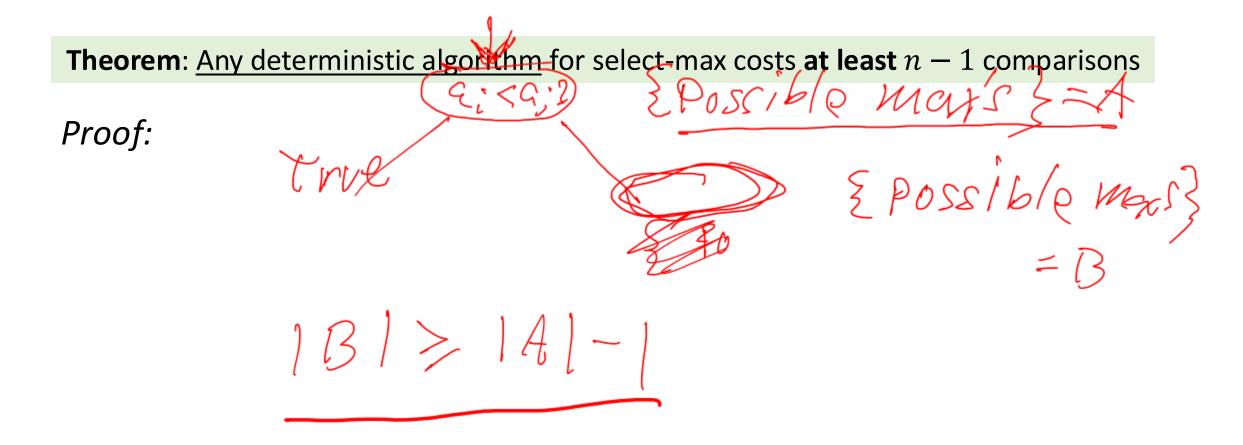
Example decision tree



Decision tree implications

- The cost of an algorithm on a particular input is the depth of the leaf node that that input leads to in the tree
- Therefore, the worst-case case of the algorithm is...
- Remember that a particular decision tree corresponds to a particular algorithm (its just a way of writing down the algorithm as an alternative to pseudocode or plain English)
- A lower-bound proof using decision trees must therefore argue that every possible decision tree for the problem has at least a certain height

Proof via decision trees



Question break

Sorting in the comparison model

- The comparison model is widely used to analyze sorting algorithms
 - You don't get to assume that the data are integers, or numbers, so the algorithms will be extremely general. They can sort anything!
- We know how to achieve $O(n \log n)$ comparisons: Quicksort (deterministic from Lecture 1), Mergesort, Heapsort.
- Can we do better?

Input/output of comparison sorting

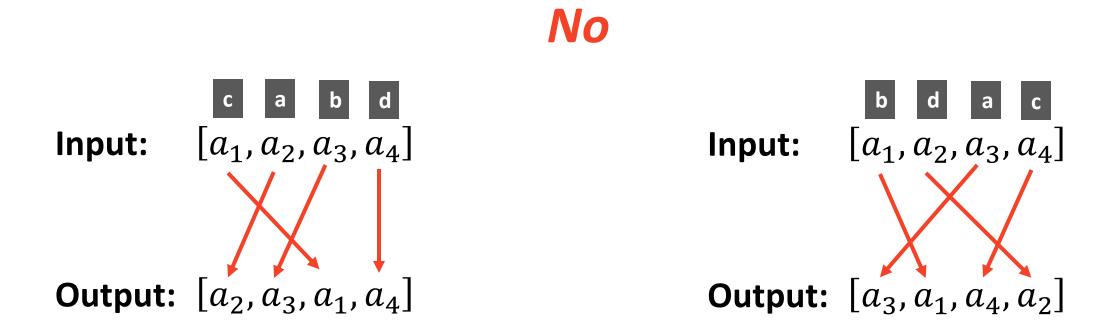
- Simplify by assuming that all the elements are distinct (no duplicates)
- The *input* is an array of elements in some initial order $a_1, a_2, a_3, ..., a_n$
- The *output* is a permutation of the input elements in sorted order

$$a_{\pi(1)} < a_{\pi(2)} < \dots < a_{\pi(n)}$$

Warning!: Defining the "output" of a comparison sort is extremely subtle if we want to correctly prove lower bounds. We must be very careful.

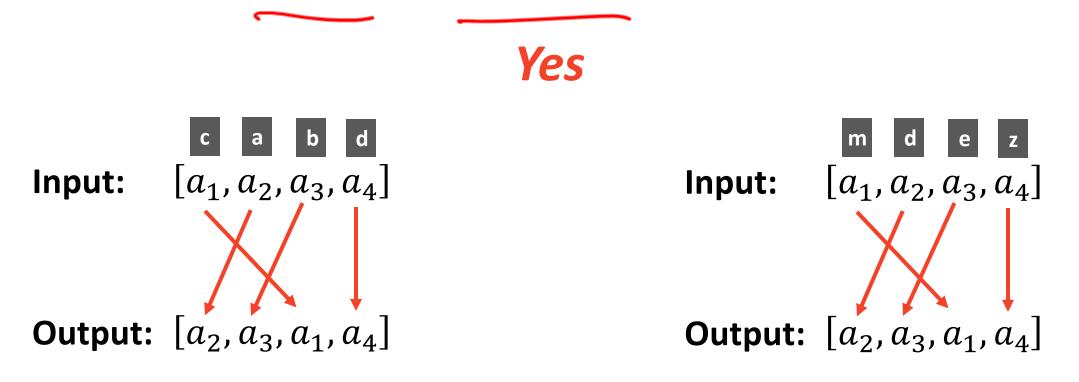
Understanding "output"

- Suppose we ask an algorithm to sort [c, a, b, d] and [b, d, a, c]
- These both sort to [a, b, c, d]. Are these **the same** output?



Understanding "output"

- Suppose we ask an algorithm to sort [c, a, b, d] and [m, d, e, z]
- These sort to [a, b, c, d] and [d, e, m, z]. Are these **the same** output?



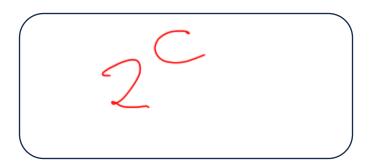
Sorting lower bound

Theorem: Any deterministic comparison sorting algorithm must perform at least $log_2(n!)$ comparisons in the worst case.

- Different technique this time. Instead of an adversary, we are going to use *information theory*
- This critically relies on how we define the input/output
- Remember that we must prove this fact for **every possible algorithm**, not just one.

Proof

- Remember, the algorithm is *deterministic!* Its behaviour is determined **entirely** by the results of the comparisons.
- If a deterministic algorithm makes *c* comparisons, how many *distinct outputs* can it possibly produce?



Proof

 How many distinct *inputs* consisting of n unique elements does the algorithm need to be able to sort?

• Can two distinct *inputs* consisting of unique elements ever be sorted by the same output?

Proof

• Therefore, a correct sorting algorithm for sorting n unique elements must be capable of producing how many distinct outputs?

$$n! \leq \# leaves \leq$$

$$n! \leq 2^{c} \leq$$

What on earth is $log_2(n!)$

• A loose bound:

$$\log_2 n! = \log_2 n + \log_2 (n-1) + \dots + \log_2 (1)$$

$$\left(\frac{n}{2}\log\frac{n}{2}\right) < \log_2 n + \log_2(n-1) + \dots + \log_2(1) < \left(n\log_2 n\right)$$

• Tighter bounds (Stirling's approximation):

$$\log_2(n!) = n \log_2 n - n \log_2 e + O(\log_2 n)$$

$$\left(\frac{n}{e}\right)^n \le n! \le n^n$$
 Very useful!

Another example

Problem (Sorting D distinct items): Consider the problem of sorting an array of n items, but we are guaranteed that there are at most D distinct elements (where $1 \le D \le n$), i.e., the array may contain many duplicates.

Intuition check: Do we expect this to be more expensive or cheaper to

solve than the previous problem?

cheapen

Je. Y algo Ja sequence with at most D dist-elts, That does seln logs) comps.

Theorem Any deterministic comparison sorting algorithm on n items where there are at most D distinct elements requires $\Omega(n \log(D))$ comparisons in the worst case.

Another example

- How many outputs does a correct algorithm need to be able to produce to solve this problem?
 - This seems **much** harder to reason about than the first problem, where we had n! distinct inputs each requiring a distinct output

$$m{a} \ m{b} \ m{b}$$
 both sorted by $[a_1, a_2, a_3]$ Number of required outputs \neq number of possible inputs

Useful observation: Suppose we focus on just a **subset of possible inputs** to the problem and prove a lower bound on the cost of solving inputs from that set. Then this lower bound applies to the entire problem.

Picking a good set of inputs

So, we want to pick a set of inputs that:

- Requires a lot of outputs. To use the information-theoretic lower bound, we want to show that lots of outputs are required.
 - Usually, we will do this by counting the number of inputs in the set and then arguing about the relationship between the number of inputs and output
 - Often (but not always) we will argue that each input requires a distinct output, so the number of inputs lower bounds the number of required outputs
- Is simple enough that we can count the number of required outputs.
 - We will try to describe a set of inputs that has some nice combinatorial structure so we can count it using counting techniques from concepts

Picking a good set of inputs

We need to describe a family of inputs on n elements where there
are at most D distinct elements.

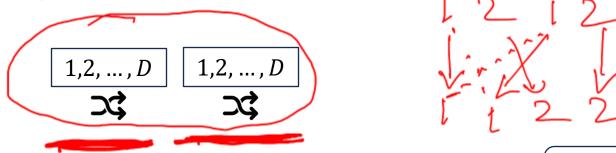
• Goals:

- Simple to describe and count
- Requires a distinct output for each input

Remember: A permutation on a list of distinct elements has a unique inverse (i.e., a unique output that sorts it)

Arguing distinctness

• Suppose I take two permutations on $1,2,\ldots,D$ (i.e., one copy of each distinct input element)



- Is there a unique output (permutation) that sorts one of these?
- Can a single output (permutation) sort two of these?

Proof: Since the elements in each half are distinct, if I swap any of them, it goes to the wrong place in the output permutation

Arguing distinctness

• Suppose I take two permutations on $1,2,\ldots,D$ (i.e., one copy of each distinct input element)

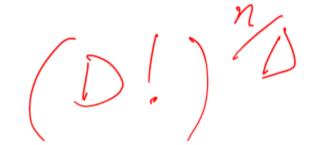
Can a single output (permutation) sort two of these? NO

Number of required outputs = number of possible inputs

Constructing our input family

• We will construct a family of inputs by concatenating n/D many permutations of $1, \dots, D$

By our previous slide, each of these requires a different output to sort,
 so number of required outputs = number of inputs in this family



The lower bound

• This family contains $(D!)^{\frac{n}{D}}$ inputs, each requiring a different output, so sorting everything in this family requires $(D!)^{\frac{n}{D}}$ outputs

• Our information-theoretic lower bound argument therefore gives us a lower bound of...

$$2^{-2} > (D!)^{\frac{n}{2}}$$

$$2^{-2} > \frac{n}{D} \log D! 2^{\frac{n}{D}} D \log D$$

$$2^{-1} > \frac{n}{D} \log D! 2^{\frac{n}{D}} D \log D$$

Summary of lower-bound techniques

- Adversary: Show that you can construct an input to "break" the algorithm if it performs too few comparisons
- **Decision Tree**: Model any algorithm for the problem as a binary tree of possible outputs and lower bound the height of the tree
- *Information-theoretic*: Count the minimum number of necessary distinct outputs that the algorithm must be able to produce
 - Sometimes we need to find a hard subset of the input and show a lower bound on that, since we can't figure out how to count the entire output set

Important result: Sorting requires $\log_2 n! = \Theta(n \log n)$ comparisons.