
Algorithm  
Design and Analysis

Introduction, Algorithm Analysis, and Selection

1

Logistics

2

Who is 15-451/15-651?

Instructors

3

Daniel Danny

Tutor

Emily

Teaching Assistants

Tanisha

Lillian

Thomas Eileen Jolyne

Ethan Jerick Michael Brenda

Sanjana

Course website

https://www.cs.cmu.edu/~15451-f25/

4

• Contains	course	calendar	with	office	hour	schedule	
• Contains	all	lecture	notes,	homework	handouts,	policies,	etc.	
• Links	to	other	important	platforms	(OHQ,	Ed,	Gradescope)

https://www.cs.cmu.edu/~15451-s25/

Homework

• 6	Written	Homework:		Each	has	2-3	problems.		Solutions	must	be	
typeset,	not	handwritten!		Submitted	to	Gradescope.	

• 3	Oral	Homework:	Collaborate	in	groups	of	three	and	present	your	
solutions	to	a	TA	

• 4	Programming	Problems:	Submitted	via	Gradescope.		
• Officially	recommended/supported	languages	are	C++	and	Python	
• We	will	accept	C,	Java,	OCaml,	Rust	when	possible	(not	guaranteed	for	every	
assignment,	and	TA/instructor	help	will	be	limited.)

5

Recitation

• Please	review	the	lecture	notes	and	read	the	problems	beforehand	

• Only	50-minutes	long	so	please	show	up	on	time!	

• 5%	of	your	grade	from	attendance	

• Two	styles	of	recitation!	

• Review-style	(R):		More	review	and	goes	at	a	slower	pace	
• Problem-heavy	(P):		Faster	pace	and	cover	more	problems

6

Midterm exams

• Evening	midterms!	

• Put	these	in	your	calendar	right	now!

Midterm one (Week 5)
Tuesday September 23rd

7:00pm – 9:30pm

Midterm two (Week 10) 
Tuesday November 4th 

7:00pm – 9:30pm

7

Tutors

• One-on-one	tutoring	is	available		
• Highly	recommended	if	you	struggled	with	any	of	the	prerequisite	
courses	(15-210,	15-251,	15-122,	concepts)	
• Open	to	anyone,	space	permitting

8

Academic Integrity
• Healthy	collaboration	within	the	rules	set	out	by	the	assignments	is	great	for	
learning,	but	cheating	is	not.

9

Definition	(Cheating):	Includes,	but	is	not	limited	to:	
• Reading/copying	answers/code	from	online	sources,	books,	etc.	
• Reading/copying	answers	of	other	people,	current	or	former	students	or	otherwise	
• Reading/copying	answers	obtained	from	generative	AI	tools	(e.g.,	ChatGPT,	CoPilot)	
• Accessing	problems	or	solutions	from	past	semesters	(e.g.,	from	a	friend	who	took	the	

course	in	a	previous	semester,	or	from	a	website,	etc.)

Academic Integrity
• Healthy	collaboration	within	the	rules	set	out	by	the	assignments	is	great	for	
learning,	but	cheating	is	not.

9

Definition	(Cheating):	Includes,	but	is	not	limited	to:	
• Reading/copying	answers/code	from	online	sources,	books,	etc.	
• Reading/copying	answers	of	other	people,	current	or	former	students	or	otherwise	
• Reading/copying	answers	obtained	from	generative	AI	tools	(e.g.,	ChatGPT,	CoPilot)	
• Accessing	problems	or	solutions	from	past	semesters	(e.g.,	from	a	friend	who	took	the	

course	in	a	previous	semester,	or	from	a	website,	etc.)

Detection:	We	are	extremely	accurate	at	catching	cheating.	
• In	Spring	2024,	we	caught	50-60	cases	of	cheating	(out	of	approx.	180	students)	
• In	Fall	2024,	we	caught	30-40	cases	of	cheating	(out	of	approx.	130	students)

AIV Alternatives

10

• 451	is	a	hard	course.	We	know	that	a	lot	of	AIVs	happen	out	of	desperation,	not	a	
premeditated	plan	to	cheat.	
• If	you	are	struggling	with	the	course,	please	sign	up	for	tutoring,	attend	
instructor	office	hours,	and	reach	out	for	additional	help	
• If	you	are	behind	and	low	on	time,	request	an	extension	(see	the	extension	
request	form	on	the	course	website)	
• Try	to	start	your	homework	early,	but	if	you	are	stuck	at	the	last	minute,	we	don’t	
close	after	business	hours.	If	you	reach	out	for	homework	help	at	the	last	
minute,	we	will	almost	always	try	to	be	available	to	help.

https://docs.google.com/forms/d/e/1FAIpQLSeqP61STzHuXV4TBdFh1z8KQzRgzR2D9TydYu5sSVo0c6agZA/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSeqP61STzHuXV4TBdFh1z8KQzRgzR2D9TydYu5sSVo0c6agZA/viewform?usp=sf_link

Now onto the class!

11

Formal analysis of algorithms

• We	want	provable	guarantees	about	the	properties	of	algorithms	
• E.g.,	prove	that	it	runs	in	a	certain	amount	of	time	
• E.g.,	prove	that	it	outputs	the	correct	answer	

• Important	question:	How	exactly	do	we	measure	time?	
• Answer:	It	depends	:)	
• Lots	more	discussion	about	this	in	the	coming	lectures

12

Formal analysis of algorithms

• We	want	provable	guarantees	about	the	properties	of	algorithms	
• E.g.,	prove	that	it	runs	in	a	certain	amount	of	time	
• E.g.,	prove	that	it	outputs	the	correct	answer	

• Important	question:	How	exactly	do	we	measure	time?	
• Answer:	It	depends	:)	
• Lots	more	discussion	about	this	in	the	coming	lectures

• We	need	a	model	of	computation!	
• Specifies	exactly	what	operations	are	permitted	
• How	much	each	operation	costs	(sometimes	called	the	cost	model)

12

Today’s model

The	Comparison	Model	
•Input	to	the	algorithm	consists	of	an	array	of	 	items	in	some	order	
•The	algorithm	may	perform	comparisons	(is	 ?)	at	a	cost	of	 	
•Copying/moving	items	is	free	
•The	items	are	of	an	arbitrary	type.	We	are	not	allowed	to	assume	a	type	
▪ E.g.,	the	items	can	not	be	assumed	to	be	numbers	
▪ This	means	we	can	not	add,	multiply,	XOR	the	items	
▪ We	also	can	not	use	hashing,	or	use	elements	as	array	indices,	etc.

𝑛
𝑎𝑖 < 𝑎𝑗 𝟏

Quicksort: A journey of algorithm design and analysis

• As	seen	in	15-122	and	15-210	(and	possibly	elsewhere!)	
• One	of	the	most	well-known	algorithms	in	all	of	computer	science

14

function	quicksort(:	list)	{	
				select	a	pivot	element	p	=	 	
				let	LESS	=	[such	that]	
				let	GREATER	=	[such	that]	
				return	quicksort(LESS)	+	[]	+	quicksort(GREATER)	
}	

𝒂[𝟎…𝒏 − 𝟏]
𝑎0

𝑎𝑗 𝑎𝑗 < 𝑝
𝑎𝑗 𝑎𝑗 > 𝑝

𝑝

Quicksort: A journey of algorithm design and analysis

• As	seen	in	15-122	and	15-210	(and	possibly	elsewhere!)	
• One	of	the	most	well-known	algorithms	in	all	of	computer	science

14

function	quicksort(:	list)	{	
				select	a	pivot	element	p	=	 	
				let	LESS	=	[such	that]	
				let	GREATER	=	[such	that]	
				return	quicksort(LESS)	+	[]	+	quicksort(GREATER)	
}	

𝒂[𝟎…𝒏 − 𝟏]
𝑎0

𝑎𝑗 𝑎𝑗 < 𝑝
𝑎𝑗 𝑎𝑗 > 𝑝

𝑝

Question:	What	is	the	complexity	of	Quicksort?

Which measure of complexity?

15

Note:	By	default,	if	not	specified,	we	will	pretty	much	always	consider	worst-case	complexity.

Definition	(Worst-case	complexity):		The	worst-case	complexity	of	an	algorithm	is	the	
largest	cost	it	can	incur	over	any	possible	input	(usually	as	a	function	of	input	size)𝑛

Theorem	(15-122):	The	worst-case	cost	of	QuickSort	on	an	input	of	length	 	is	𝑛 Θ(𝑛2)

Which measure of complexity?

16

Note:		Mathematically,	this	is	equivalent	to	the	expected	value	of	the	cost	of	the	
algorithm	over	an	input	chosen	uniformly	randomly.

Definition	(Average-case	complexity):		The	average-case	complexity	of	an	algorithm	is	
the	average	of	the	costs	of	the	algorithm	over	every	possible	input.

Note:	We	will	rarely,	if	ever,	consider	average-case	complexity	in	15-451/651.

Which measure of complexity?

16

Note:		Mathematically,	this	is	equivalent	to	the	expected	value	of	the	cost	of	the	
algorithm	over	an	input	chosen	uniformly	randomly.

Definition	(Average-case	complexity):		The	average-case	complexity	of	an	algorithm	is	
the	average	of	the	costs	of	the	algorithm	over	every	possible	input.

Theorem	(15-210):	The	average	cost	of	QuickSort	on	an	input	of	length	 	is	𝑛 Θ(𝑛 log 𝑛)

Note:	We	will	rarely,	if	ever,	consider	average-case	complexity	in	15-451/651.

Making it better

• The	average-case	performance	of	QuickSort	is	great	
• But	its	only	reliable	if	the	input	is	random!		An	evil	adversary	can	
always	feed	our	code	a	worst-case	input	and	ruin	our	day	:(
• Most	real-life	data	is	not	random.		Hoping	that	data	is	random	is	not	a	
good	way	to	design	your	algorithms.

17

Making it better

• The	average-case	performance	of	QuickSort	is	great	
• But	its	only	reliable	if	the	input	is	random!		An	evil	adversary	can	
always	feed	our	code	a	worst-case	input	and	ruin	our	day	:(
• Most	real-life	data	is	not	random.		Hoping	that	data	is	random	is	not	a	
good	way	to	design	your	algorithms.

17

Important	idea:		Instead	of	hoping	that	the	input	is	random…	
put	the	randomness	into	the	algorithm!

Making it better: Randomized Quicksort

18

function	random_quicksort(:	list)	{	
				select	a	random	pivot	element	p	=	 	
				let	LESS	=	[such	that]	
				let	GREATER	=	[such	that]	
				return	random_quicksort(LESS)	+	[]	+	random_quicksort(GREATER)	
}	

𝒂[𝟎…𝒏 − 𝟏]
𝑎𝑖

𝑎𝑗 𝑎𝑗 < 𝑝
𝑎𝑗 𝑎𝑗 > 𝑝

𝑝

Analyzing randomized algorithms

19

IMPORTANT	NOTES:

Theorem	(15-210):	The	expected	number	of	comparisons	performed	by	
randomized	Quicksort	on	any	input	of	size	 	is	𝑛 Θ(𝑛 log 𝑛)

Note:	When	analyzing	randomized	algorithms,	we	are	usually	interested	in	the	
expected	value	over	the	random	choices	to	process	a	worst-case	user	input

Analyzing randomized algorithms

19

IMPORTANT	NOTES:

• we	are	not	assuming	that	our	random-number	generator	gives	us	the	worst	
possible	random	numbers,	
• we	are	not	analyzing	the	algorithm	for	a	randomly	chosen	input	(that’s	average-
case	complexity!)

Theorem	(15-210):	The	expected	number	of	comparisons	performed	by	
randomized	Quicksort	on	any	input	of	size	 	is	𝑛 Θ(𝑛 log 𝑛)

Note:	When	analyzing	randomized	algorithms,	we	are	usually	interested	in	the	
expected	value	over	the	random	choices	to	process	a	worst-case	user	input

The Quicksort journey so far

20

Its	fast	in	practice!

Worst-case	cost	is	Θ(𝑛2)

Average-case	cost	is	Θ(𝑛 log 𝑛)

Randomized	Quicksort	costs	
	in	expectationΘ(𝑛 log 𝑛)

The Quicksort journey so far

20

Its	fast	in	practice!

Worst-case	cost	is	Θ(𝑛2)

Average-case	cost	is	Θ(𝑛 log 𝑛)

Randomized	Quicksort	costs	
	in	expectationΘ(𝑛 log 𝑛)

What	if	we	could	efficiently	
find	the	median	element	and	
use	that	as	the	pivot?

TINI n I 2T E
O nlogn

The Quicksort journey so far

20

Its	fast	in	practice!

Worst-case	cost	is	Θ(𝑛2)

Average-case	cost	is	Θ(𝑛 log 𝑛)

Randomized	Quicksort	costs	
	in	expectationΘ(𝑛 log 𝑛)

What	if	we	could	efficiently	
find	the	median	element	and	
use	that	as	the	pivot?

Deterministic	Quicksort	in	
worst-case	 	cost??Θ(𝑛 log 𝑛)

New Problem: Median finding

21

New problem: Median / smallest𝒌𝐭𝐡

• More	generally,	we	can	try	to	solve	the	“ 	smallest”	problem.		Given	a	range	
of	distinct	elements	and	an	integer	 ,	we	want	to	find	the	element	such	that	
there	are	exactly	 	smaller	elements	

• 	is	zero-indexed,	so	the	minimum	element	is	the	0th	smallest	element

𝑘th

𝑘
𝑘

𝑘

22

Problem	(Median)	Given	a	range	of	distinct	elements	 ,	output	the	median.𝑎1, 𝑎2, …, 𝑎𝑛

Definition	(Median):	The	median	is	the	 smallest	element⌊ 𝑛 − 1
2 ⌋th

Algorithm design strategy

23

Algorithm	design	idea:	Start	with	a	simple	but	inefficient	algorithm,	then	optimize	and	remove	
unnecessary	steps.

Algorithm design strategy

23

Algorithm	design	idea:	Start	with	a	simple	but	inefficient	algorithm,	then	optimize	and	remove	
unnecessary	steps.

Simple	algorithm	(smallest):	Sort	the	array	and	output	element	𝒌𝒕𝒉 𝑘

Algorithm design strategy

• Redundancy:		We	are	finding	the	 	smallest	for	every	𝑘𝑡h 𝑘

23

Algorithm	design	idea:	Start	with	a	simple	but	inefficient	algorithm,	then	optimize	and	remove	
unnecessary	steps.

Simple	algorithm	(smallest):	Sort	the	array	and	output	element	𝒌𝒕𝒉 𝑘

Take inspiration from Quicksort?

Question:	If	we	only	want	the	 	number,	what	is	wasteful	here?	𝑘th

function	quicksort()	{	
				select	a	pivot	element	p	=	 	
				let	LESS	=	[such	that]	
				let	GREATER	=	[such	that]	
				return	quicksort(LESS)	+	[]	+	quicksort(GREATER)	
}	

𝒂[𝟎…𝒏 − 𝟏]
𝑎𝑖

𝑎𝑗 𝑎𝑗 < 𝑝
𝑎𝑗 𝑎𝑗 > 𝑝

𝑝

24

Take inspiration from Quicksort?

Question:	If	we	only	want	the	 	number,	what	is	wasteful	here?	𝑘th

function	quicksort()	{	
				select	a	pivot	element	p	=	 	
				let	LESS	=	[such	that]	
				let	GREATER	=	[such	that]	
				return	quicksort(LESS)	+	[]	+	quicksort(GREATER)	
}	

𝒂[𝟎…𝒏 − 𝟏]
𝑎𝑖

𝑎𝑗 𝑎𝑗 < 𝑝
𝑎𝑗 𝑎𝑗 > 𝑝

𝑝

return	quicksort(LESS)	+	[]	+	quicksort(GREATER)𝑝

The	answer	is	either	in	here Or	the	answer	is	in	here

24

The result: Randomized Quickselect
function	quickselect()	{	
				select	a	random	pivot	element	p	=	 	for	a	random	 	
				let	LESS	=	[such	that]	
				let	GREATER	=	[such	that]	

				if	____________	then	return	______________________	

				else	if	_____________	then	return	_________________	

				else	return	_______________________	
}	

𝑎[0…𝑛 − 1], 𝑘
𝑎𝑖 𝑖

𝑎𝑗 𝑎𝑗 < 𝑝
𝑎𝑗 𝑎𝑗 > 𝑝

25

ILESS CK quickselect LESS K

ILESS K quickselect GREATER

p k LESS 1

Now the analysis

26

Let	 	the	expected	number	of	comparisons	performed	by	
Quickselect	on	a	worst-case	input	of	size	

𝑇(𝑛) =
𝑛

Theorem:	The	expected	number	of	comparisons	performed	by	Quickselect	on	
an	input	of	size	 	is	at	most	𝑛 8𝑛

Warning:	The	proof	is	subtle	because	it	uses	probability.		We	must	be	careful	to	
not	make	false	assumptions	about	how	probability	and	randomness	work…

Ten n I E T X
Site of recon call

First attempt: Almost-correct analysis

Question:		What	is	a	(good)	upper	bound	on	the	expected	size	of	the	
recursive	subproblem?	

So,	we	might	try	the	recurrence…	
	 𝑇(𝑛) ≤

27

Note:	This	proof	is	nearly,	but	not	quite	correct.	It	does,	however,	provide	some	
useful	insight	that	gets	us	closer	to	a	correct	proof.

EEXJ n T atby

in general

F FEELET ECTEX

A better proof

Question:	Let’s	be	more	precise.		How	often	is	the	recursive	subproblem	
size	at	most	 	?	

So,	a	better	recurrence	relation	is	
	

3𝑛 /4

𝑇(𝑛) ≤

28

e

n 1 T En Tcn

Tcn En I En
T n 2 n 1 T En

Validating the recurrence relation

𝑇(𝑛) ≤ 2(𝑛 − 1) + 𝑇(3𝑛
4)

29

2n an 2n t

2n 2n 84

Summary of randomized Quickselect

• Runs	in	 	expected	time	in	
the	comparison	model.	
• More	tightly,	uses	at	most	 	
comparisons	in	expectation.	
• An	as	exercise,	the	analysis	
can	be	improved	to	 	
comparisons.

𝑂(𝑛)

8𝑛

4𝑛

function	quickselect()	{	
				select	a	random	pivot	element	p	=	 	for	a	random	 	
				let	LESS	=	[such	that]	
				let	GREATER	=	[such	that]	

				if	 	then	return	quickselect(LESS,)	
				else	if	 	then	return	
				else	return	quickselect(RIGHT,	 	
}	

𝑎[0…𝑛 − 1], 𝑘
𝑎𝑖 𝑖

𝑎𝑗 𝑎𝑗 < 𝑝
𝑎𝑗 𝑎𝑗 > 𝑝

LESS ≥ 𝑘 𝑘
LESS = 𝑘 𝑝

𝑘 − LESS − 1)

30

Have we achieved our goal?

• Use	Quickselect	to	select	the	pivot	for	Quicksort	
• Guaranteed	best-case	recursion	for	Quicksort	
• Problem?

31

Have we achieved our goal?

• Use	Quickselect	to	select	the	pivot	for	Quicksort	
• Guaranteed	best-case	recursion	for	Quicksort	
• Problem?

31

• Randomized	Quickselect	is	still…	randomized.	
• So,	Quicksort	would	still	be	 	randomized,	not	deterministic𝑂(𝑛 log 𝑛)

We want a deterministic algorithm!!

• Where	was	the	randomness	in	Randomized	QuickSelect?		How	can	we	
get	rid	of	it?

32

We want a deterministic algorithm!!

• Where	was	the	randomness	in	Randomized	QuickSelect?		How	can	we	
get	rid	of	it?

• What	if	we	could	deterministically	find	the	optimal	pivot?		What	
would	that	be?		The	median!		Oh…

32

We want a deterministic algorithm!!

• Where	was	the	randomness	in	Randomized	QuickSelect?		How	can	we	
get	rid	of	it?

• What	if	we	could	deterministically	find	the	optimal	pivot?		What	
would	that	be?		The	median!		Oh…

32

What	we	need:	In	 	comparisons,	we	need	to	find	a	“good”	pivot.	A	
good	pivot	would	leave	us	with	 	elements	in	the	recursive	call,	for	some	

fraction	 ,	e.g.,	 	elements	is	good.

𝑂(𝑛)
𝑐𝑛

𝑐 < 1 3𝑛
4

Picking a good pivot

• Picking	the	median	as	the	pivot	is	too	much	to	ask	for,	so	we	want	
some	kind	of	“approximate	median”

33

Picking a good pivot

• Picking	the	median	as	the	pivot	is	too	much	to	ask	for,	so	we	want	
some	kind	of	“approximate	median”

33

Idea	(doesn’t	quite	work,	but	very	close):		Pick	the	median	of	a	smaller	subset	of	the	
input	(faster	to	find)	then	hope	that	it	is	a	good	approximation	to	the	true	median.

Picking a good pivot

• Picking	the	median	as	the	pivot	is	too	much	to	ask	for,	so	we	want	
some	kind	of	“approximate	median”

Question:	What	if	we	find	the	median	of	half	of	the	elements?	How	
good	of	a	pivot	is	this	element?

33

Idea	(doesn’t	quite	work,	but	very	close):		Pick	the	median	of	a	smaller	subset	of	the	
input	(faster	to	find)	then	hope	that	it	is	a	good	approximation	to	the	true	median.

E to find a pivot
whichguaranteesboth parts

are 3,4

Median of half

If	we	pivot	on	the	median	of	half	of	the	elements,	the	number	of	
comparisons	will	be	

	 𝑇(𝑛) ≤

34

n TCE TC n

n n this solves to

1 En En na where α

satisfies
EM 1
ie 1.50712

Median of half

If	we	pivot	on	the	median	of	half	of	the	elements,	the	number	of	
comparisons	will	be	

	 𝑇(𝑛) ≤

Exercise:		Show	that	picking	any	constant-fraction	sized	subset	(e.g.,	a	quarter,	one	
tenth)	and	taking	the	median	doesn’t	work.

34

We need to go deeper!

• Finding	the	median	of	a	smaller	set	almost	worked,	but	it	was	just	a	bit	
too	much	work	since	the	“approximate	median”	wasn’t	good	enough.

35

Note:	This	idea	is	extremely	subtle.	It	took	four	Turing	Award	winners	to	figure	it	
out.		We	don’t	expect	that	you	would	produce	this	algorithm	on	your	own.

We need to go deeper!

• Finding	the	median	of	a	smaller	set	almost	worked,	but	it	was	just	a	bit	
too	much	work	since	the	“approximate	median”	wasn’t	good	enough.

35

Note:	This	idea	is	extremely	subtle.	It	took	four	Turing	Award	winners	to	figure	it	
out.		We	don’t	expect	that	you	would	produce	this	algorithm	on	your	own.

Huge	idea	(median	of	medians):		Find	the	medians	of	several	small	subsets	of	
the	input,	then	find	the	median	of	those	medians.

Median of medians algorithm
function	DeterministicSelect()	{	
				group	the	array	into	 	groups	of	size	5,	find	the	median	of	each	group	
				recursively	find	the	median	of	these	medians,	call	it	 	

				//	Below	is	the	same	as	Randomized	Quickselect	
				let	LESS	=	[such	that]	
				let	GREATER	=	[such	that]	
				if	 	then	return	DeterministicSelect(LESS,)	
				else	if	 	then	return	
				else	return	DeterministicSelect(RIGHT,	 	
}	

𝑎[0…𝑛 − 1], 𝑘
𝑛 /5

𝑝

𝑎𝑗 𝑎𝑗 < 𝑝
𝑎𝑗 𝑎𝑗 > 𝑝

LESS ≥ 𝑘 𝑘
LESS = 𝑘 𝑝

𝑘 − LESS − 1)

36

How good is the median of medians?

37

Theorem:	The	median	of	medians	is	larger	than	at	least	 	of	the	input,	and	
smaller	than	at	least	 	of	the	input

3/10ths

3/10ths

Mm

fgfi.EOF.fitf.in 1mm

i t.anffh.tn

Analysis of DeterministicSelect

1. Find	the	median	of	 	groups	of	size	5	

2. Recursively	find	the	median	of	medians	

3. Split	the	input	into	LESS	and	GREATER	

4. Recurse	on	the	appropriate	piece

𝑛 /5

	 𝑇(𝑛) ≤

38

Theorem:	The	number	of	comparisons	performed	by	DeterministicSelect	on	an	
input	of	size	 	is	𝑛 𝑂(𝑛)

n

E
4 1

E
c n TCE E

Solving the recurrence

𝑇(𝑛) ≤ 𝑐𝑛 + 𝑇(𝑛
5) + 𝑇(7𝑛

10)

39

70 40 1
This is why it's linear

This solves to n It
Each level contributes is n
at most 9 times the
one above it Fton

So, the total running time is…

𝑇(𝑛) ≤ 𝑐𝑛(1 + (9/10) + (9/10)2 + (9/10)3 + …)

40

Summary of DeterministicSelect

• The	median	of	medians	is	the	
key	ingredient	for	getting	a	
deterministic	algorithm	
• To	analyze	the	recurrence,	we	
used	the	“stack	of	bricks”	
method.	
• We	could	also	prove	it	by	
induction,	but	this	requires	us	
to	know	the	runtime	already

function	DeterministicSelect()	{	
				group	the	array	into	 	groups	of	size	5,	
								find	the	median	of	each	group	
				recursively	find	the	median	of	these	medians,	call	it	 	

				//	Below	is	the	same	as	Randomized	Quickselect	
				let	LESS	=	[such	that]	
				let	GREATER	=	[such	that]	
				if	 	then	return	DeterministicSelect(LESS,)	
				else	if	 	then	return	
				else	return	DeterministicSelect(RIGHT,	 	
}	

𝑎[0…𝑛 − 1], 𝑘
𝑛 /5

𝑝

𝑎𝑗 𝑎𝑗 < 𝑝
𝑎𝑗 𝑎𝑗 > 𝑝

LESS ≥ 𝑘 𝑘
LESS = 𝑘 𝑝

𝑘 − LESS − 1)

41

42

The Quicksort journey

42

1. Use	the	median-of-medians	
algorithm	to	find	the	median	in	
deterministic	 	cost	

2. Use	the	median	as	the	pivot	for	
Quicksort

Θ(𝑛)

Its	fast	in	practice!

Worst-case	cost	is	Θ(𝑛2)

Average-case	cost	is	Θ(𝑛 log 𝑛)

Randomized	Quicksort	costs	
	in	expectationΘ(𝑛 log 𝑛)

42

The Quicksort journey

42

1. Use	the	median-of-medians	
algorithm	to	find	the	median	in	
deterministic	 	cost	

2. Use	the	median	as	the	pivot	for	
Quicksort

Θ(𝑛)

Its	fast	in	practice!

Worst-case	cost	is	Θ(𝑛2)

Average-case	cost	is	Θ(𝑛 log 𝑛)

Randomized	Quicksort	costs	
	in	expectationΘ(𝑛 log 𝑛)

Deterministic	Quicksort	in	
worst-case	 	cost!!𝛩(𝑛 log 𝑛)

Take-home messages for today

• There’s	more	to	Quicksort	than	you	think!	
• Recursion	is	powerful,	randomization	is	powerful.	
• Analyzing	randomized	recursive	algorithms	is	tricky.		Be	careful	with	
expected	values!!	
• Analyzing	runtime	via	recurrence	relations	is	very	useful.

43

