15-451/651 Algorithm Design & Analysis, Fall 2025 Recitation #3

Objectives

- Understand the technique of *fingerprinting* and apply it to solve string problems
- Understand the SegTree data structure and its applications
- See how to define and use custom operators to make SegTrees solve even more problems

Recitation Problems

1. (A String Matching Oracle) In this recitation we generalize the fingerprinting method described in lecture. Let $T = t_0, t_1, \ldots, t_{n-1}$, be a string over some alphabet $\Sigma = \{0, 1, \ldots, z-1\}$. Let $T_{i,j}$ denote the substring $t_i, t_{i+1}, \ldots, t_{j-1}$. This string is of length j-i. We want to preprocess T such that the following comparison of two substrings of T of length ℓ can be answered (with a low probability of a false positive) in constant time:

Test if
$$T_{i,i+\ell} = T_{i,i+\ell}$$

First of all let's define the fingerprinting function. Let p be a prime, along with a base b (larger than the alphabet size). The Karp-Rabin fingerprint of T is

$$h(T) = (t_0 b^{n-1} + t_1 b^{n-2} + \dots + t_{n-1} b^0) \mod p$$

We are essentially interpreting the characters as digits in an integer in base b instead of base 2 like in lecture. From now on we will omit the mod p from these expressions.

Now, to preprocess the string T, we will compute the following arrays for $0 \le i \le n$: (*Don't forget we are omitting the* mod s!)

$$r[i] = b^{i}$$

 $a[i] = t_{0}b^{i-1} + t_{1}b^{i-2} + \dots + t_{i-1}b^{0}$

- (a) Give algorithms for computing these in time O(n):
- (b) Find an expression for $h(T_{i,j})$.
- (c) Explain how to select p such that for $T_{i,i+\ell} \neq T_{i,j+\ell}$, we have

$$\Pr[h(T_{i,i+\ell}) = h(T_{j,j+\ell})] \le 1/n.$$

(d) Argue that this choice of *p* allows for constant-time modular arithmetic under the word-RAM model.

So the end result is that we can test if $T_{i,i+\ell} = T_{j,j+\ell}$ by comparing $h(T_{i,i+\ell})$ with $h(T_{j,j+\ell})$. The probability of a false positive can be made as small as desired by picking a sufficiently large random prime p.

2. **(Abby's Favorite Problem)** Suppose we start with some array of integers A. Given a sequence of query intervals in the form $[l_1, r_1), [l_2, r_2), ..., [l_m, r_m)$, return the maximum element and how many times it appears in $A[l_i], ..., A[r_i-1]$ in $O(\log n)$ time for each query $[l_i, r_i)$. You can use O(n) time for preprocessing.

3. (Crossing intervals) Suppose we have a list of n intervals $I_i = [a_i, b_i]$ where $0 \le a_i b_i < 2n$, such that the endpoints of all of the intervals are distinct (no two intervals ever share an endpoint at either end). A pair of intervals I_i and I_j are *crossing* if they overlap but one does not strictly contain the other. We want to devise an algorithm to count the number of pairs of crossing intervals.

- (a) Give a simple $O(n^2)$ algorithm for the problem
- (b) Come up with a more efficient $O(n \log n)$ algorithm by making use of a SegTree