15-451/651 Algorithm Design & Analysis, Fall 2025

Recitation #3

Objectives
* Understand the technique of fingerprinting and apply it to solve string problems
* Understand the SegTree data structure and its applications

* See how to define and use custom operators to make SegTrees solve even more problems

Recitation Problems

1. (A String Matching Oracle) In this recitation we generalize the fingerprinting method de-
scribed in lecture. Let T = t,, t4,..., t,_;, be a string over some alphabet ¥ ={0,1,...,z2—1}.
Let T; ; denote the substring ¢;, #;,,,..., £;_;. This string is of length j —i. We want to pre-
process T such that the following comparison of two substrings of T of length ¢ can be
answered (with a low probability of a false positive) in constant time:

Testif T; o = T ju

First of all let’s define the fingerprinting function. Let p be a prime, along with a base b
(larger than the alphabet size). The Karp-Rabin fingerprint of T is

h(T)=(tob" ' +1t,b" *+---+ 1, ,b°)mod p
We are essentially interpreting the characters as digits in an integer in base b instead of
base 2 like in lecture. From now on we will omit the mod p from these expressions.

Now, to preprocess the string T, we will compute the following arrays for 0 < i < n:
(Don't forget we are omitting the mods!)

r[i] = b!

a[i] = tobi_1+t1bi_2+"'+ ti_lbo
(a) Give algorithms for computing these in time O(n):
(b) Find an expression for i(T; ;).

(c) Explain how to select p such that for T; ;,, # T} ;,;, we have

Pr{R(T; i+¢) = h(Tj,jH)] <1/n.

(d) Argue that this choice of p allows for constant-time modular arithmetic under the
word-RAM model.

So the end result is that we can test if T; ;,, = T;, ;,, by comparing h(T; ;,,) with h(T; ;,,). The
probability of a false positive can be made as small as desired by picking a sufficiently large
random prime p.

2. (Abby’s Favorite Problem) Suppose we start with some array of integers A. Given a se-
quence of query intervals in the form [/, r),[L, 15), ..., [L, '), r€turn the maximum element
and how many times it appears in A[[;], ..., A[r; — 1] in O(logn) time for each query [/;, r;).
You can use O(n) time for preprocessing.

3. (Crossing intervals) Suppose we have a list of n intervals I; = [a;, b;] where 0 < a b; < 2n,
such that the endpoints of all of the intervals are distinct (no two intervals ever share an
endpoint at either end). A pair of intervals I; and I; are crossing if they overlap but one
does not strictly contain the other. We want to devise an algorithm to count the number of

pairs of crossing intervals.

Crossing Not crossing

(a) Give a simple O(n?) algorithm for the problem

(b) Come up with a more efficient O(n logn) algorithm by making use of a SegTree

