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Who Is 15-451 / 15-6517

Daniel Anderson Daniel Danny Sleator

TAs: Abby Li, Claire Jin, David Tang, Efe Cekirge, Jonathan Liu, Nick Grill, Raaid
Tanveer, Sophie Liu, Dhruti Kuchibhotla, Summit Wei, Will Gay, Yoseph Mak



Grading and policies

8 Homeworks: 40%
Recitation Attendance 5%
2 Midterm exams 30%
Final exam 25%

See the full policy list: https://www.cs.cmu.edu/~15451-f23/policies.html



https://www.cs.cmu.edu/~15451-f23/policies.html

Homework

 Written Homework: Each has 3-4 problems. Solutions must be
typeset, not handwritten!

* Oral Homework: Collaborate in groups of three and present your
solutions to a TA

* Programming Problems: Zero or one of these on each homework.
Submitted via Autolab.
 Officially recommended/supported languages are C++ and Python
* We will also try to accept C, Java, OCaml, Rust, SML



Homework submission

e Submit to Gradescope/Autolab by 11:59pm on the due date
* Grace days: 2 for written, 2 for programming (separate)

* Homework 1 will be released on Thursday



Recitation

* Please review the lecture notes and read the problems beforehand
* Only 50-minutes long so please show up on time!

* 5% of your grade from attendance

* |f you can’t make it to your section on a particular week, you may attend a
different section for your attendance credit (please email both your section
TAs and the TAs who run the section you will attend instead)

* |f you can’t make it to any sections in a particular week and have a valid
excuse, email your section TAs and they will waive the requirement



Office hours

* See the course calendar! Usually regular, but changes may happen.
* Locations are TBD

* Queue here: http://jonathansliu.com/

* Some office hours may be dedicated to a specific purpose (e.g.,
written questions only, programming only, non-homework questions
only, TBD)


http://jonathansliu.com/

Midterm exams

* New this semester: Out-of-class midterms!

C

* Midterm one: Tuesday September 26" (Week €) at 7:00pm
* Midterm two: Thursday November 9" (Week 10) at 7:00pm

* The midterms were previously 80-minutes long (in class time)
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Midterm timing

* The midterms will be designed to be similar in difficulty to the
previous semesters (i.e., challenging to complete in 80 minutes...)

* However, the exam is now scheduled for 7:00pm — 9:30pm, more
than double time!

* Lastly, we plan to not put a hard stop at 9:30pm. If you need slightly
longer, you're welcome to keep going a bit more until we need to go
home for bed :)



Goals of the course

Learn how to design algorithms and formally analyze them in several
different models / scenarios. Also practice implementing some!

* Algorithm design techniques: Dynamic programming, hashing and
data structures, randomization, network flows, linear programming

* Analysis: Recurrences, probabilistic analysis, amortized analysis

* Models: Online algorithms, approximation algorithms, lower bounds



Now onto the algorithms!



Formal analysis of algorithms

* We want provable guarantees about the properties of algorithms
* E.g., prove that it runs in a certain amount of time
e E.g., prove that it outputs the correct answer

* Important question: How exactly do we measure time?

 Answer: It depends :)
* More discussion about this in the coming lectures

* Today: The comparison model. Given an algorithm whose input is an
array of elements from some totally ordered set, we count the
number of comparisons required to produce the output.



Today’s problem: Median / k" smallest

Problem (Median) Given a range of distinct numbers a4, a,, ..., a,;, output the median.

Definition (Median) The median is the element such that exactly |[n/2]| elements are larger

 More generally, we can try to solve the “k™ smallest” problem.
Given a range of distinct elements and an integer k, we want to find
the element such that there are exactly k smaller elements



Algorithm design strategy

Algorithm design idea: Start with a simple but inefficient algorithm, then optimize
and remove unnecessary steps.

Simple algorithm (k" smallest): Sort the array and output element k

* This takes O(n log n) comparisons using MergeSort, QuickSort, or
HeapSort to do the sorting step.

« Redundancy: We are finding the k" smallest for every k

Idea (Partial Sorting): Rearrange the numbers such that the k™ number is in position k,
and all elements less than the k™ number occur before position k



Recall: Randomized QuickSort

function quicksort(a[1 ... n]) {
select a random pivot element p = a; for a random i
let LESS = [a; such that a; < p]
let GREATER = [a; such that a; > p]
return quicksort(LESS) + [p] + quicksort(GREATER)

}
Question: If we only want the k™ number, what is wasteful here?

return quicksort(LESS) + [p] + quicksort(GREATER)
\ J | J
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The answer is either in here = — Or the answer is in here




The result: Randomized Quickselect

0 n-)
function quickselect(a[¥...n]){ , k_)
select a random pivot element p = a; for a random i
let LESS = [a; such that a; < p]

let GREATER = [a; such that a; > p]
if R <|LESS| then return C{u(akf&WCLES§! ‘QB
else if B> LLESS|  then return 7u\obsM(QF-EATEf, b-ILES/|-1)

elsereturn P
i




Now the analysis

Theorem: The expected number of comparisons performed by
Quickselect on an input of size n is at most 8n

IMPORTANT NOTES:

Note: When analyzing randomized algorithms, we are usually interested in the
expected value over the random choices to process a worst-case user input

* i.e., we are not assuming that our random-number generator gives us the worst possible
random numbers, and we are not analyzing the algorithm for a randomly chosen input.



Proof of Theorem

Warning: The proof is subtle because it uses probability. We must be careful to
not make false assumptions about how probability and randomness work...

Let T(n) = the expected number of comparisons performed by
Quickselect on a worst-case input of size n

/r(nx - n-1 + [k [T(X\]




First attempt: Almost-correct analysis

Note: This proof is nearly, but not quite correct. It does, however,
provide some useful insight that gets us closer to a correct proof.

Question: What is a (good) upper bound on the expected size of the

recursive subproblem?
3N

T T ()

So, we might try the recurrence...
rm< n~] + T (5
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A better proof

Question: Let’s be more precise. How often is the recursive
subproblem size at most 3n/4 ?
I

] T | 2
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So, a better recurrence relation is
L 3n 1 —



Validating the recurrence relation

T(n) <2(n—1) + T(3n/4)

3N
‘T(h) < 2(n-1) + ?"H:

< Yn



Summary of randomized Quickselect

0 p-) * Runs in O(n) expected time
function quickselect(a[/l’...n]) {, k.) . .
select a random pivot element p = a; for a random i IN the COmparISOn mOdEI.
let LESS = [a; such that a; < p] .
let GREATER = [a; such that a; > p] * More tightly, uses at most 8n

comparisons in expectation.
if |LESS| > k then return quickselect(LESS, k)

else if [LESS| = k then return p * An as exercise, the analysis
else return quickselect(RIGHT, k — |LESS| — 1) ¢

} can be improved to 4n
comparisons.



Question break



How about a deterministic algorithm?

e Where was the randomness in Randomized QuickSelect? How can
we get rid of it?

 What if we could deterministically find the optimal pivot? What
would that be? The median! Oh...

What we need: In O(n) comparisons, we need to find a “good” pivot.
A good pivot would leave us with cn elements in the recursive call, for
some fraction ¢ < 1, e.g., 3n/4 elements is good.



Picking a good pivot
* Picking the median as the pivot is too much to ask for, so we want

some kind of “approximate median”

Idea (doesn’t quite work, but very close): Pick the median of a
smaller subset of the input (faster to find) then hope that it is a good
approximation to the true median.

Question: What if we find the median of half of the elements?



Median of half

If we pivot on the median of half of the elements, the number of
comparisons will be

rms nox T(35) + T(5)

Exercise: Show that picking any constant-fraction sized subset (e.g., a quarter, one
tenth) and taking the median doesn’t work.



We need to go deeper!

Note: This idea is extremely subtle. It took four Turing Award
winners to figure it out. We don’t expect that you would produce
this algorithm on your own.

* Finding the median of a smaller set almost worked, but it was just a bit
too much work since the “approximate median” wasn’t good enough.

Huge idea (median of medians): Find the medians of several small
subsets of the input, then find the median of those medians.



Median of medians algorithm

function DeterministicSelect(a[0 ...n — 1]) {

group the array into n/5 groups of size 5, find the median of each group
recursively find the median of these medians, call it p

// Below is the same as Randomized Quickselect
let LESS = [a; such that a; < p]

let GREATER = [a; such that a; > p]

if [LESS| = k then return DeterministicSelect(LESS, k)
else if [LESS| = k then return p

else return DeterministicSelect(RIGHT, k — |LESS| — 1)



How good Is the median of medians?

Theorem: The median of medians is larger than at least 3/10™"S of
the input, and smaller than at least 3/10S of the input

9500600606
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Analysis of DeterministicSelect

Theorem: The number of comparisons performed by
DeterministicSelect on an input of size n is O(n)

Find the median of n/5 groups of size 5 O (f‘)

n
2. Recursively find the median of medians T ( X
Split the input into LESS and GREATER /) — |

7n
4. Recurse on the appropriate piece T 1/5

rms< o)+ T3~ T(%)



Solving the recurrence

T(n) <cn+Tn/5)+T(7n/10)
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So, the total running time is...

T(n) < cn(1+ (9/10) + (9/10)2 + (9/10)3 + -++)



Summary of DeterministicSelect

function DeterministicSelect(a[0 ...n — 1]) {

group the array into n/5 groups of size 5,
find the median of each group

recursively find the median of these medians, call it p

// Below is the same as Randomized Quickselect

let LESS = [a; such that a; < p]

let GREATER = [a; such that a; > p]

if |LESS| = k then return DeterministicSelect(LESS, k)
else if |LESS| = k then return p

else return DeterministicSelect(RIGHT, k — |LESS| — 1)

* The median of medians is the
key ingredient for getting a
deterministic algorithm

* To analyze the recurrence, we
used the “stack of bricks”
method.

* We could also prove it by
induction, but this requires us
to know the runtime already



Take-home messages for today

e Recursion is powerful, randomization is powerful.

* Analyzing randomized recursive algorithms is tricky. Be careful with
expected values!!

* Analyzing runtime via recurrence relations is very useful. We can do it
with several different techniques:

* Guess the answer and verify via induction
* Expand it out / “stack of bricks” if we don’t already know the answer
* You probably learned even more techniques in your prerequisite classes
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