
Algorithm
Design and Analysis

Introduction & Linear-time Selection Algorithms

Logistics

Who is 15-451 / 15-651?

Daniel Anderson Daniel Danny Sleator

TAs: Abby Li, Claire Jin, David Tang, Efe Cekirge, Jonathan Liu, Nick Grill, Raaid
Tanveer, Sophie Liu, Dhruti Kuchibhotla, Summit Wei, Will Gay, Yoseph Mak

Grading and policies

See the full policy list: https://www.cs.cmu.edu/~15451-f23/policies.html

8 Homeworks: 40%

Recitation Attendance 5%

2 Midterm exams 30%

Final exam 25%

https://www.cs.cmu.edu/~15451-f23/policies.html

Homework

• Written Homework: Each has 3-4 problems. Solutions must be
typeset, not handwritten!

• Oral Homework: Collaborate in groups of three and present your
solutions to a TA

• Programming Problems: Zero or one of these on each homework.
Submitted via Autolab.
• Officially recommended/supported languages are C++ and Python

• We will also try to accept C, Java, OCaml, Rust, SML

Homework submission

• Submit to Gradescope/Autolab by 11:59pm on the due date

• Grace days: 2 for written, 2 for programming (separate)

• Homework 1 will be released on Thursday

Recitation

• Please review the lecture notes and read the problems beforehand

• Only 50-minutes long so please show up on time!

• 5% of your grade from attendance

• If you can’t make it to your section on a particular week, you may attend a
different section for your attendance credit (please email both your section
TAs and the TAs who run the section you will attend instead)

• If you can’t make it to any sections in a particular week and have a valid
excuse, email your section TAs and they will waive the requirement

Office hours

• See the course calendar! Usually regular, but changes may happen.

• Locations are TBD

• Queue here: http://jonathansliu.com/

• Some office hours may be dedicated to a specific purpose (e.g.,
written questions only, programming only, non-homework questions
only, TBD)

http://jonathansliu.com/

Midterm exams

• New this semester: Out-of-class midterms!

• Midterm one: Tuesday September 26th (Week 6) at 7:00pm

• Midterm two: Thursday November 9th (Week 10) at 7:00pm

• The midterms were previously 80-minutes long (in class time)

Midterm timing

• The midterms will be designed to be similar in difficulty to the
previous semesters (i.e., challenging to complete in 80 minutes…)

• However, the exam is now scheduled for 7:00pm – 9:30pm, more
than double time!

• Lastly, we plan to not put a hard stop at 9:30pm. If you need slightly
longer, you’re welcome to keep going a bit more until we need to go
home for bed :)

Goals of the course

Learn how to design algorithms and formally analyze them in several
different models / scenarios. Also practice implementing some!

• Algorithm design techniques: Dynamic programming, hashing and
data structures, randomization, network flows, linear programming

• Analysis: Recurrences, probabilistic analysis, amortized analysis

• Models: Online algorithms, approximation algorithms, lower bounds

Now onto the algorithms!

Formal analysis of algorithms

• We want provable guarantees about the properties of algorithms
• E.g., prove that it runs in a certain amount of time

• E.g., prove that it outputs the correct answer

• Important question: How exactly do we measure time?
• Answer: It depends :)

• More discussion about this in the coming lectures

• Today: The comparison model. Given an algorithm whose input is an
array of elements from some totally ordered set, we count the
number of comparisons required to produce the output.

Today’s problem: Median / 𝒌𝐭𝐡 smallest

• More generally, we can try to solve the “𝑘th smallest” problem.
Given a range of distinct elements and an integer 𝑘, we want to find
the element such that there are exactly 𝑘 smaller elements

Problem (Median) Given a range of distinct numbers 𝒂𝟏, 𝒂𝟐 , … , 𝒂𝒏, output the median.

Definition (Median) The median is the element such that exactly 𝑛/2 elements are larger

Algorithm design strategy

Simple algorithm (𝒌𝒕𝒉 smallest): Sort the array and output element 𝑘

Algorithm design idea: Start with a simple but inefficient algorithm, then optimize
and remove unnecessary steps.

• This takes 𝑂(𝑛 log 𝑛) comparisons using MergeSort, QuickSort, or
HeapSort to do the sorting step.

• Redundancy: We are finding the 𝑘𝑡ℎ smallest for every 𝑘

Idea (Partial Sorting): Rearrange the numbers such that the 𝑘th number is in position 𝑘,

and all elements less than the 𝑘th number occur before position 𝑘

Recall: Randomized QuickSort

Question: If we only want the 𝑘th number, what is wasteful here?

function quicksort(𝒂[𝟏 … 𝒏]) {
 select a random pivot element p = 𝑎𝑖 for a random 𝑖
 let LESS = [𝑎𝑗 such that 𝑎𝑗 < 𝑝]

 let GREATER = [𝑎𝑗 such that 𝑎𝑗 > 𝑝]

 return quicksort(LESS) + [𝑝] + quicksort(GREATER)
}

return quicksort(LESS) + [𝑝] + quicksort(GREATER)

The answer is either in here Or the answer is in here

The result: Randomized Quickselect

function quickselect(𝑎[1 … 𝑛]) {
 select a random pivot element p = 𝑎𝑖 for a random 𝑖
 let LESS = [𝑎𝑗 such that 𝑎𝑗 < 𝑝]

 let GREATER = [𝑎𝑗 such that 𝑎𝑗 > 𝑝]

 if ____________ then return ______________________

 else if _____________ then return _________________

 else return _______________________
}

Now the analysis

Theorem: The expected number of comparisons performed by
Quickselect on an input of size 𝑛 is at most 8𝑛

Note: When analyzing randomized algorithms, we are usually interested in the
expected value over the random choices to process a worst-case user input

IMPORTANT NOTES:

• i.e., we are not assuming that our random-number generator gives us the worst possible
random numbers, and we are not analyzing the algorithm for a randomly chosen input.

Proof of Theorem

Let 𝑇 𝑛 = the expected number of comparisons performed by
Quickselect on a worst-case input of size 𝑛

Warning: The proof is subtle because it uses probability. We must be careful to
not make false assumptions about how probability and randomness work…

First attempt: Almost-correct analysis

Question: What is a (good) upper bound on the expected size of the
recursive subproblem?

So, we might try the recurrence…

 𝑇 𝑛 ≤

Note: This proof is nearly, but not quite correct. It does, however,
provide some useful insight that gets us closer to a correct proof.

A better proof

Question: Let’s be more precise. How often is the recursive
subproblem size at most 3𝑛/4 ?

So, a better recurrence relation is

 𝑇 𝑛 ≤

Validating the recurrence relation

𝑇 𝑛 ≤ 2 𝑛 − 1 + 𝑇(3𝑛/4)

Summary of randomized Quickselect

• Runs in 𝑂(𝑛) expected time
in the comparison model.

• More tightly, uses at most 8𝑛
comparisons in expectation.

• An as exercise, the analysis
can be improved to 4𝑛
comparisons.

function quickselect(𝑎[1 … 𝑛]) {
 select a random pivot element p = 𝑎𝑖 for a random 𝑖
 let LESS = [𝑎𝑗 such that 𝑎𝑗 < 𝑝]

 let GREATER = [𝑎𝑗 such that 𝑎𝑗 > 𝑝]

 if LESS ≥ 𝑘 then return quickselect(LESS, 𝑘)
 else if LESS = 𝑘 then return 𝑝
 else return quickselect(RIGHT, 𝑘 − LESS − 1)
}

Question break

How about a deterministic algorithm?

• Where was the randomness in Randomized QuickSelect? How can
we get rid of it?

What we need: In 𝑂 𝑛 comparisons, we need to find a “good” pivot.
A good pivot would leave us with 𝑐𝑛 elements in the recursive call, for
some fraction 𝑐 < 1, e.g., 3𝑛/4 elements is good.

• What if we could deterministically find the optimal pivot? What
would that be? The median! Oh…

Picking a good pivot

• Picking the median as the pivot is too much to ask for, so we want
some kind of “approximate median”

Idea (doesn’t quite work, but very close): Pick the median of a
smaller subset of the input (faster to find) then hope that it is a good
approximation to the true median.

Question: What if we find the median of half of the elements?

Median of half

If we pivot on the median of half of the elements, the number of
comparisons will be

 𝑇 𝑛 ≤

Exercise: Show that picking any constant-fraction sized subset (e.g., a quarter, one
tenth) and taking the median doesn’t work.

We need to go deeper!

• Finding the median of a smaller set almost worked, but it was just a bit
too much work since the “approximate median” wasn’t good enough.

Note: This idea is extremely subtle. It took four Turing Award
winners to figure it out. We don’t expect that you would produce

this algorithm on your own.

Huge idea (median of medians): Find the medians of several small
subsets of the input, then find the median of those medians.

Median of medians algorithm

function DeterministicSelect(𝑎[0 … 𝑛 − 1]) {
 group the array into 𝑛/5 groups of size 5, find the median of each group
 recursively find the median of these medians, call it 𝑝

 // Below is the same as Randomized Quickselect
 let LESS = [𝑎𝑗 such that 𝑎𝑗 < 𝑝]

 let GREATER = [𝑎𝑗 such that 𝑎𝑗 > 𝑝]

 if LESS ≥ 𝑘 then return DeterministicSelect(LESS, 𝑘)
 else if LESS = 𝑘 then return 𝑝
 else return DeterministicSelect(RIGHT, 𝑘 − LESS − 1)
}

How good is the median of medians?

Theorem: The median of medians is larger than at least 3/10ths of
the input, and smaller than at least 3/10ths of the input

Analysis of DeterministicSelect

1. Find the median of 𝑛/5 groups of size 5

2. Recursively find the median of medians

3. Split the input into LESS and GREATER

4. Recurse on the appropriate piece

Theorem: The number of comparisons performed by
DeterministicSelect on an input of size 𝑛 is 𝑂 𝑛

𝑇 𝑛 ≤

Solving the recurrence

𝑇 𝑛 ≤ 𝑐𝑛 + 𝑇 𝑛/5 + 𝑇(7𝑛/10)

So, the total running time is…

𝑇 𝑛 ≤ 𝑐𝑛(1 + 9/10 + 9/10 2 + 9/10 3 + ⋯)

Summary of DeterministicSelect

• The median of medians is the
key ingredient for getting a
deterministic algorithm

• To analyze the recurrence, we
used the “stack of bricks”
method.

• We could also prove it by
induction, but this requires us
to know the runtime already

function DeterministicSelect(𝑎[0 … 𝑛 − 1]) {
 group the array into 𝑛/5 groups of size 5,
 find the median of each group
 recursively find the median of these medians, call it 𝑝

 // Below is the same as Randomized Quickselect
 let LESS = [𝑎𝑗 such that 𝑎𝑗 < 𝑝]

 let GREATER = [𝑎𝑗 such that 𝑎𝑗 > 𝑝]

 if LESS ≥ 𝑘 then return DeterministicSelect(LESS, 𝑘)
 else if LESS = 𝑘 then return 𝑝
 else return DeterministicSelect(RIGHT, 𝑘 − LESS − 1)
}

Take-home messages for today

• Recursion is powerful, randomization is powerful.

• Analyzing randomized recursive algorithms is tricky. Be careful with
expected values!!

• Analyzing runtime via recurrence relations is very useful. We can do it
with several different techniques:
• Guess the answer and verify via induction

• Expand it out / “stack of bricks” if we don’t already know the answer

• You probably learned even more techniques in your prerequisite classes

	Slide 1: Algorithm Design and Analysis
	Slide 2: Logistics
	Slide 3: Who is 15-451 / 15-651?
	Slide 4: Grading and policies
	Slide 5: Homework
	Slide 6: Homework submission
	Slide 7: Recitation
	Slide 8: Office hours
	Slide 9: Midterm exams
	Slide 10
	Slide 11
	Slide 12: Midterm timing
	Slide 13: Goals of the course
	Slide 14: Now onto the algorithms!
	Slide 15: Formal analysis of algorithms
	Slide 16: Today’s problem: Median / bold italic k to the bold t bold h smallest
	Slide 17: Algorithm design strategy
	Slide 18: Recall: Randomized QuickSort
	Slide 19: The result: Randomized Quickselect
	Slide 20: Now the analysis
	Slide 21: Proof of Theorem
	Slide 22: First attempt: Almost-correct analysis
	Slide 23: A better proof
	Slide 24: Validating the recurrence relation
	Slide 25: Summary of randomized Quickselect
	Slide 26: Question break
	Slide 27: How about a deterministic algorithm?
	Slide 28: Picking a good pivot
	Slide 29: Median of half
	Slide 30: We need to go deeper!
	Slide 31: Median of medians algorithm
	Slide 32: How good is the median of medians?
	Slide 33: Analysis of DeterministicSelect
	Slide 34: Solving the recurrence
	Slide 35: So, the total running time is…
	Slide 36: Summary of DeterministicSelect
	Slide 37: Take-home messages for today

