15-451/651: Design & Analysis of Algorithms October 21, 2015
Lecture #14 last changed: November 7, 2015

In this lecture we describe a very nice algorithm due to Seidel for Linear Programming in low-
dimensional spaces. We then discuss the general notion of Linear Programming Duality, a powerful
tool that you should definitely master.

1 Seidel’s LP algorithm

We now describe a linear-programming algorithm due to Raimund Seidel that solves the 2-dimensional
(i.e., 2-variable) LP problem in O(m) time (recall, m is the number of constraints), and more gen-
erally solves the d-dimensional LP problem in time O(d!m).

Setup: We have d variables x1,...,z4. We are given m linear constraints in these variables
a; -x < by,...,ay, - x < b, along with an objective ¢ - x to maximize. (Using boldface to denote
vectors.) Our goal is to find a solution x satisfying the constraints that maximizes the objective.
In the example above, the region satisfying all the constraints is given in gray, the arrow indicates
the direction in which we want to maximize, and the cross indicates the x that maximizes the
objective.

(You should think of sweeping the dashed line, which is perpendicular to ¢ (i.e., it consists of points
with the same value of ¢ - x) in the direction of increasing values of ¢ - x until you reach the last
point that satisfies the constraints.)

The idea: Here is the idea of Seidel’s algorithm. Let’s add in the constraints one at a time, and
keep track of the optimal solution for the constraints so far. Suppose, for instance, we have found
the optimal solution x* for the first m — 1 constraints (let’s assume for now that the constraints so
far do not allow for infinitely-large values of c-x) and we now add in the mth constraint a,, -x < by,.
There are two cases to consider:

Case 1: If x* satisfies the constraint, then x* is still optimal. Time to perform this test: O(d).

Case 2: If x* doesn’t satisfy the constraint, then the new optimal point will be on the (d — 1)-
dimensional hyperplane a,, - x = b, or else there is no feasible point.
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As an example, consider the situation below, before and after we add in the linear constraint
a;, - X < by, colored in red (if you are looking at this in color). This causes the feasible region to
change from the light blue region to the smaller gray region, and the optimal point to move.

Let’s now focus on the case d = 2 and consider the time it takes to handle Case 2 above. With
d = 2, the hyperplane a,, - x = b,;, is just a line, and let’s call one direction “right” and the other
“left”. We can now scan through all the other constraints, and for each one, compute its intersection
point with this line and whether it is “facing” right or left (i.e., which side of that point satisfies
the constraint). We find the rightmost intersection point of all the constraints facing to the right
and the leftmost intersection point of all that are facing left. The interval between them is the
feasible region. So, if they cross, there is no solution; otherwise, the solution is whichever endpoint
of that interval gives a better value of ¢ - x (if they give the same value — i.e., the line a,, - x = b,
is perpendicular to ¢ — then say let’s take the rightmost point).

The total time taken here is O(m) since we have m — 1 constraints to scan through and it takes
O(1) time to process each one.

Right now, this looks like an O(m?)-time algorithm for d = 2, since we have potentially taken O(m)
time to add in a single new constraint if Case 2 occurs. But, suppose we add the constraints in a
random order? What can we say about the ezpected running time then?

Here is Seidel’s clever way of analyzing this. Let’s just consider the very last constraint (we’ll then
go by induction) and ask: what is the probability that constraint m goes to Case 27 Notice that
the optimal solution to all m constraints (assuming the LP is feasible and bounded) is at a corner
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of the feasible region, and this corner is defined by two constraints, namely the two sides of the
polygon that meet at that point. If both of those two constraints have been seen already, then we
are guaranteed to be in Case 1. So, if we are inserting constraints in a random order, the probability
we are in Case 2 when we get to constraint m is at most 2/m. This means that the expected cost
of inserting the mth constraint is at most:

E[cost of inserting mth constraint] < (1 —2/m)O(1) + (2/m)O(m) = O(1).

This is sometimes called backwards analysis since what we are saying is that if we go backwards
and pluck out a random constraint from the m we have, the chance it was one of the constraints
that mattered was at most 2/m.

So, Seidel’s algorithm is as follows. Place the constraints in a random order and insert them one at
a time, keeping track of the best solution so far as above. We just showed that the expected cost
of the ith insert is O(1) (or if you prefer, we showed T'(m) = O(1) + T'(m — 1) where T'() is the
expected cost of a problem with i constraints), so the overall expected cost is O(m).

1.1 Handling Special Cases, and Extension to Higher Dimensions

(We will not be testing you on this part, but you should try to understand it all the same.)

What if the LP is infeasible? There are two ways we can analyze this. One is that if the LP
is infeasible, then it turns out this is determined by at most 3 constraints. So we get the same
as above with 2/m replaced by 3/m. Another way to analyze this is imagine we have a separate
account we can use to pay for the event that we get to Case 2 and find that the LP is infeasible.
Since that can only happen once in the entire process (once we determine the LP is infeasible, we
stop), this just provides an additive O(m) term. To put it another way, if the system is infeasible,
then there will be two cases for the final constraint: (a) it was feasible until then, in which case we
pay O(m) out of the extra budget (but the above analysis applies to the the (feasible) first m — 1
constraints), or (b) it was infeasible already in which case we already halted so we pay 0.

What about unboundedness? One way we can deal with this is put everything inside a bounding
box —A < z; < A (so, for instance, if all ¢; are positive then the initial x* = (\,...,\)) where we
view A symbolically as a limit quantity. For example, in 2-dimensions, if ¢ = (0,1) and we have a
constraint like 221 4+ z2 < 8, then we would see it is not satisfied by (A, A), intersect the contraint
with the box and update to x* = (4 — A\/2, \).

So far we have shown that for d = 2, the expected running time of the algorithm is O(m). For
general values of d, there are two main changes. First, the probability that constraint m enters
Case 2 is now d/m rather than 2/m. Second, we need to compute the time to perform the update
in Case 2. Notice, however, that this is a (d — 1)-dimensional linear programming problem, and so
we can use the same algorithm recursively, after we have spent O(dm) time to project each of the
m — 1 constraints onto the (d — 1)-dimensional hyperplane a,, - x = b,,. Putting this together we
have a recurrence for expected running time:

T(d,m) < T(d,m—1)+O(d) + %[O(dm) FT(d—1,m—1)].

This then solves to T'(d,m) = O(d!m).



2 Linear Programming Duality

Consider the following LP

P = max(2z; + 3z2)
s.t. 4dx) + 8xg <12
201 + 22 <3
3z + 2292 <4

1,22 > 0

3x1+2x2§4
I\ 221+ 29 <3

/ Ay + 812 < 12

max 2x1 + 329
‘\

In an attempt to solve P we can produce upper bounds on its optimal value.

e Since 21 + 3z < 4x1 + 8x9 < 12, we know OPT(P) < 12. (The first inequality uses that
2x1 < 4x7 because x1 > 0, and similarly 3zo < 8x9 because x2 > 0.)

e Since 221 + 3z < (421 + 8z2) < 6, we know OPT(P) < 6.
e Since 2z1 + 3z9 < %((4x1 + 829) + (221 + x2)) < 5, we know OPT(P) < 5.

In each of these cases we take a positive! linear combination of the constraints, looking for better
and better bounds on the maximum possible value of 2x1 + 3zs.

How do we find the “best” upper bound that can be achieved as a linear combination of the
constraints? This is just another algorithmic problem, and we can systematically solve it, by
letting y1, y2,ys be the (unknown) coefficients of our linear combination. Then we must have
dy1 + 2y2 + 3y3 > 2
8y1 +y2 +2y3 > 3 (2)
Y1,Y2,Y3 >0
and we seek min(12y; + 3y2 + 4y3)

"Why positive? If you multiply by a negative value, the sign of the inequality changes.
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This too is an LP! We refer to this LP (2) as the “dual” and the original LP 1 as the “primal”.
We designed the dual to serve as a method of constructing an upper bound on the optimal value of
the primal, so if y is a feasible solution for the dual and z is a feasible solution for the primal, then
2x1 + 3z < 1297 + 3yo + 4y3. If we can find two feasible solutions that make these equal, then we
know we have found the optimal values of these LP.

In this case the feasible solutions x; = %,.732 = % and y; = %,yg =0,y3 = i give the same value
4.75, which therefore must be the optimal value.

Exercise: The dual LP is a minimization LP, where the constraints are of the form lhs; > rhs;. You
can try to give lower bounds on the optimal value of this LP by taking positive linear combinations of
these constraints. E.g., argue that

12y + 3y2 + 4yz > 4y1 + 2y2 + 3y2 > 2
(since y; > 0 for all ) and
12y1 +3y2 +4ys > 8y1 +y2 + 2y3 > 3

and
2 4 1
12y1 + 3y2 + 4ys > 5(491 + 2y + 3y2) + (8y1 + y2 + 2y3) > 3+ 3= 45.

Formulate the problem of finding the best lower bound obtained by linear combinations of the given
inequalities as an LP. Show that the resulting LP is the same as the primal LP 1.

Exercise: Consider the LP:

P = max(7z1 — x2 + 5x3)
st. 1+ 22 +4rs <8
3r1 —x2 +2w3 < 3
201 + bxe —x3 < =7
z1,%2,23 > 0
Show that the problem of finding the best upper bound by linear combinations of the constraints can
be written as the following dual LP:
D = min(8y1 + 3y2 — Tys)
st. y1+3y2+2ys > 7
Y1 —y2 +5ys > —1
dy1 +2y2 —ys > 5
Y1,Y2,Y3 > 0

Also, now formulate the problem of finding a lower bound for the dual LP. Show this lower-bounding
LP is just the primal (P).

2.1 The Method

Consider the examples/exercises above. In all of them, we started off with a “primal” maximization
LP. Solve for x to:

maximize c!x (3)
subject to Ax < b
x >0,



The constraint x > 0 is just short-hand for saying that the x variables are constrained to be non-
negative.? And to get the best upper bound we generated a “dual” minimization LP. Solve for y
to:

minimize y’ b (4)
subject to y? A4 > ¢!
y 20,

And if you take the dual of (4) to try to get the best lower bound on this LP, you'll get (3). The
dual of the dual is the primal. The dual and the primal are best upper/lower bounds you can obtain
as linear combinations of the inputs.

The natural question is: maybe we can obtain better bounds if we combine the inequalities in more
complicated ways, not just using linear combinations. Or do we obtain optimal bounds using just
linear combinations? In fact, we get optimal bounds using just linear combinations, as the next
theorems show.

2.2 The Theorems

It is easy to show that the dual (4) provides an upper bound on the value of the primal (3):

Theorem 1 (Weak Duality) If x is a feasible solution to the primal LP (3) and'y is a feasible
solution to the dual LP (4) then
c'x <y'p.

Proof: This is just a sequence of trivial inequalities that follow from the LPs above:
cI'x < (yTA)x =y (Ax) < yTb.

The amazing (and deep) result here is to show that the dual actually gives a perfect upper bound
on the primal (assuming some mild conditions).

Theorem 2 (Strong Duality Theorem) Suppose the primal LP (3) is feasible (i.e., it has at
least one solution) and bounded (i.e., the optimal value is not cc). Then the dual LP (4) is also
feasible and bounded. Moreover, if x* is the optimal primal solution, and y* is the optimal dual
solution, then

cI'x* = (y")b.
In other words, the mazimum of the primal equals the minimum of the dual.

Why is this useful? If I wanted to prove to you that x* was an optimal solution to the primal, I
could give you the solution y*, and you could check that x* was feasible for the primal, y* feasible
for the dual, and they have equal objective function values.

This min-max relationship is like in the case of s-t flows: the maximum of the flow equals the
minimum of the cut. Or like in the case of zero-sum games: the payoff for the minimax-optimal

2We use the convention that vectors like ¢ and x are column vectors. So ¢ is a row vector, and thus c¢7x is
the same as the inner product ¢ - x = >, c;z;. We often use c¢Tx and c - x interchangeably. Also, a < b means
component-wise inequality, i.e., a; < b; for all 4.



strategy of the row player equals the (negative) of the payoff of the minimax-optimal strategy of
the column player. Indeed, both these things are just special cases of strong duality!

We will not prove Theorem 2 in this course, though the proof is not difficult. But let’s give a
geometric intuition of why this is true in the next section.

2.3 A Geometric Viewpoint

To give a geometric view of the strong duality theorem, consider an LP of the following form:

maximize ¢! x (5)

subject to Ax<Db

Given two constraints like a; - x < b; and as - x < bo, notice that you can add them to create more
constraints that have to hold, like (a; + ag) - x < by + b, or (0.7a; + 2.9a3) - x < (0.7by + 2.9by).
In fact, any positive linear combination has to hold.

To get a feel of what this looks like geometrically, say we start with constraints z1 < 1 and x4 < 1.
These imply 21 + 22 < 2 (the red inequality), x1 + 2x9 < 3 (the green one), etc.

Ty + 22 <2

2
N
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In fact, you can create any constraint running through the intersection point (1,1) that has the
entire feasible region on one side by using different positive linear combinations of these inequalities.

Now, suppose you have the LP (5) in n variables with objective c¢-x to maximize. As we mentioned
when talking about the simplex algorithm, unless the feasible region is unbounded (and let’s assume
for this entire discussion that the feasible region is bounded), the optimum point will occur at some
vertex x* of the feasible region, which is an intersection of n of the constraints, and have some
value v* = ¢ - x*.

Consider the n inequality constraints that define the vertex x*, say these are
a; - x<by, ay-x<by, ..., a,- -x<b,,

so that for each i € {1,2,...,n} the point x* satisfies the equalities
a;-x="b, ay-x=by, ..., a, -x=b,.

Just as in the simple example above, if you take these n inequality constraints that define the
vertex x* and look at all positive linear combinations of these, you can again create any constraint
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you want going through x* that has the entire feasible region on one side. One such constraint is
c-x < v*. It goes through x* (since we have ¢ - x* = v*) and every point in the feasible region
is contained in it (since no feasible point has value more than v*). So it is possible to create the
constraint ¢ - x < v* using some positive linear combination of the a; - x < b; constraints.

Why is this interesting?

We've shown a short proof (a “succinct certificate”) that x* is optimal. Indeed, if I gave you a
solution x* and claimed it was optimal for the given constraints and the objective function c - x,
it is not clear how I would convince you of x’s optimality. In 2-dimensions I could draw a figure,
but in higher dimensions things get more difficult. But we’ve just shown that I can take a positive
linear combination of the given constraints a; - x < b; and create the constraint ¢ - x < v* = ¢ - x*,
hence showing we can’t do any better.

How do we find this positive linear combination of the constraints? Hey, it’s actually just another
linear program. Indeed, suppose we want to find the best possible bound c - x < v for as small a
value v as possible. Say the original LP had the m constraints

al-ngl, aQ-ngz, ey am-XSbm,
written compactly as Ax < b.

What’s our goal? We want to find positive values y1,y2, ...,y such that
S yai=c.
i
From this positive linear combination we can infer the upper bound
c-x= (Zyiai) -x < Zyibi.
i i
And we want this upper bound to be as “tight” (i.e., small) as possible, so let’s solve the LP:

min Z biy; subject to Z Yia; = C.
i i

(In matrix notation, if y is a m x 1 column vector consisting of the y; variables, then we want to
minimize y’b subject to y’' A = c.) This is yet again the same process as in the example at the
beginning of lecture.

Let us summarize: we started off with the “primal” LP,
maximize ¢’ x (6)
subject to Ax<Db

and were trying to find the best bound on the optimal value of this LP. And to do this, we wrote
the “dual” LP:

minimize y’ b (7)
subject to  yTA=cT
y > 0.

Note that this primal/dual pair looks slightly different from the pair (3) and (4). There the primal
had non-negativity constraints, and the dual had an inequality. Here the variables of the primal
are allowed to be negative, and the dual has equalities. But these are just cosmetic differences; the
basic principles are the same.



