
Parallel Computer Architecture and Programming
CMU 15-418/15-618, Fall 2023

Lecture 3:

Parallel Programming
Abstractions

(and their corresponding HW/SW implementations)

 CMU 15-418/618, Fall 2023

Today’s theme is a critical idea in this course.
And today’s theme is:

Abstraction vs. Implementation

Conflating abstraction with implementation is a common
cause for confusion in this course.

 CMU 15-418/618, Fall 2023

An example:
Programming with ISPC

 CMU 15-418/618, Fall 2023

ISPC

▪ Intel SPMD Program Compiler (ISPC)

▪ SPMD: single program multiple data

▪ https://github.com/ispc/ispc

 CMU 15-418/618, Fall 2023

Example

void sinx(int N, int terms, float* x, float* result)

{

 for (int i=0; i<N; i++)

 {

 float value = x[i];

 float numer = x[i] * x[i] * x[i];

 int denom = 6; // 3!

 int sign = -1;

 for (int j=1; j<=terms; j++)

 {

 value += sign * numer / denom;

 numer *= x[i] * x[i];

 denom *= (2*j+2) * (2*j+3);

 sign *= -1;

 }

 result[i] = value;

 }

}

Compute sin(x) using Taylor expansion: sin(x) = x - x3/3! + x5/5! - x7/7! + ...
for each element of an array of N floating-point numbers

 CMU 15-418/618, Fall 2023

sin(x) in ISPC

export void sinx(
 uniform int N,
 uniform int terms,
 uniform float* x,
 uniform float* result)
{
 // assume N % programCount = 0
 for (uniform int i=0; i<N; i+=programCount)
 {

 int idx = i + programIndex;
 float value = x[idx];
 float numer = x[idx] * x[idx] * x[idx];
 uniform int denom = 6; // 3!
 uniform int sign = -1;

 for (uniform int j=1; j<=terms; j++)
 {
 value += sign * numer / denom
 numer *= x[idx] * x[idx];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }
 result[idx] = value;
 }
}

Compute sin(x) using Taylor expansion: sin(x) = x - x3/3! + x5/5! - x7/7! + ...

#include “sinx_ispc.h”

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);

C++ code: main.cpp ISPC code: sinx.ispc

SPMD programming abstraction:
Call to ISPC function spawns “gang” of ISPC
“program instances”

All instances run ISPC code concurrently

Upon return, all instances have completed

 CMU 15-418/618, Fall 2023

sin(x) in ISPC

#include “sinx_ispc.h”

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);

C++ code: main.cpp

Call to sinx()
Begin executing programCount
instances of sinx() (ISPC code)

Sequential execution (C code)

Sequential execution
 (C code)

sinx() returns.
Completion of ISPC program instances.
Resume sequential execution

1 2 3 4 5 6 7 8

Compute sin(x) using Taylor expansion: sin(x) = x - x3/3! + x5/5! - x7/7! + ...

In this illustration programCount = 8

SPMD programming abstraction:
Call to ISPC function spawns “gang” of ISPC
“program instances”

All instances run ISPC code concurrently

Upon return, all instances have completed

 CMU 15-418/618, Fall 2023

export void sinx(
 uniform int N,
 uniform int terms,
 uniform float* x,
 uniform float* result)
{
 // assumes N % programCount = 0
 for (uniform int i=0; i<N; i+=programCount)
 {

 int idx = i + programIndex;
 float value = x[idx];
 float numer = x[idx] * x[idx] * x[idx];
 uniform int denom = 6; // 3!
 uniform int sign = -1;

 for (uniform int j=1; j<=terms; j++)
 {
 value += sign * numer / denom
 numer *= x[idx] * x[idx];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }
 result[idx] = value;
 }
}

#include “sinx_ispc.h”

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);

C++ code: main.cpp ISPC code: sinx.ispc

ISPC Keywords:
programCount: number of simultaneously
executing instances in the gang (uniform value)

programIndex: id of the current instance in the
gang. (a non-uniform value: “varying”)

uniform: A type modifier. All instances have the
same value for this variable. Its use is purely an
optimization. Not needed for correctness.

sin(x) in ISPC
“Interleaved” assignment of array elements to program instances

 CMU 15-418/618, Fall 2023

Interleaved assignment of program instances
to loop iterations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

“Gang” of ISPC program instances
In this illustration: gang contains four instances: programCount = 4

Instance 0
(programIndex = 0)

Instance 1
(programIndex = 1)

Instance 2
(programIndex = 2)

Instance 3
(programIndex = 3)

Elements of output array (results)

 CMU 15-418/618, Fall 2023

ISPC implements the gang abstraction using
SIMD instructions
#include “sinx_ispc.h”

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);

C++ code: main.cpp

ISPC compiler generates SIMD implementation:
Number of instances in a gang is the SIMD width of the hardware (or a small multiple of SIMD width)
ISPC compiler generates binary (.o) with SIMD instructions
C++ code links against object file as usual

Call to sinx()
Begin executing programCount
instances of sinx() (ISPC code)

Sequential execution (C code)

Sequential execution
 (C code)

sinx() returns.
Completion of ISPC program instances.
Resume sequential execution

1 2 3 4 5 6 7 8

SPMD programming abstraction:
Call to ISPC function spawns “gang” of ISPC “program instances”
All instances run ISPC code concurrently
Upon return, all instances have completed

 CMU 15-418/618, Fall 2023

sin(x) in ISPC: version 2
“Blocked” assignment of elements to instances

export void sinx(
 uniform int N,
 uniform int terms,
 uniform float* x,
 uniform float* result)
{
 // assume N % programCount = 0
 uniform int count = N / programCount;
 int start = programIndex * count;
 for (uniform int i=0; i<count; i++)
 {

 int idx = start + i;
 float value = x[idx];
 float numer = x[idx] * x[idx] * x[idx];
 uniform int denom = 6; // 3!
 uniform int sign = -1;

 for (uniform int j=1; j<=terms; j++)
 {
 value += sign * numer / denom
 numer *= x[idx] * x[idx];
 denom *= (j+3) * (j+4);
 sign *= -1;

 }
 result[idx] = value;
 }
}

#include “sinx_ispc.h”

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);

C++ code: main.cpp ISPC code: sinx.ispc

 CMU 15-418/618, Fall 2023

Blocked assignment of program instances to loop
iterations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Instance 0
(programIndex = 0)

Instance 1
(programIndex = 1)

Instance 2
(programIndex = 2)

Instance 3
(programIndex = 3)

“Gang” of ISPC program instances
In this illustration: gang contains four instances: programCount = 4

Elements of output array (results)

 CMU 15-418/618, Fall 2023

Schedule: interleaved assignment
“Gang” of ISPC program instances

Gang contains four instances: programCount = 4

Instance 0
(programIndex = 0)

Instance 1
(programIndex = 1)

Instance 2
(programIndex = 2)

Instance 3
(programIndex = 3)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

time

_mm_load_ps1

Single “packed load” SSE instruction (_mm_load_ps1)
efficiently implements:
float value = x[idx];
for all program instances, since the four values are
contiguous in memory

...
// assumes N % programCount = 0
for (uniform int i=0; i<N; i+=programCount)
 {

 int idx = i + programIndex;
 float value = x[idx];

...

i=1

i=2

i=3

i=0

 CMU 15-418/618, Fall 2023

Schedule: blocked assignment
“Gang” of ISPC program instances

Gang contains four instances: programCount = 4

Instance 0
(programIndex = 0)

Instance 1
(programIndex = 1)

Instance 2
(programIndex = 2)

Instance 3
(programIndex = 3)

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

time

uniform int count = N / programCount;
int start = programIndex * count;
for (uniform int i=0; i<count; i++) {

 int idx = start + i;
 float value = x[idx];

...

float value = x[idx];
now touches four non-contiguous values in memory.
Need “gather” instruction to implement
(gather is a more complex, and more costly SIMD
instruction: only available since 2013 as part of AVX2)

i=1

i=2

i=3

i=0 _mm_i32gather

 CMU 15-418/618, Fall 2023

Raising level of abstraction with foreach

export void sinx(
 uniform int N,
 uniform int terms,
 uniform float* x,
 uniform float* result)
{
 foreach (i = 0 ... N)
 {

 float value = x[i];
 float numer = x[i] * x[i] * x[i];
 uniform int denom = 6; // 3!
 uniform int sign = -1;

 for (uniform int j=1; j<=terms; j++)
 {
 value += sign * numer / denom
 numer *= x[i] * x[i];
 denom *= (2*j+2) * (2*j+3);
 sign *= -1;

 }
 result[idx] = value;
 }
}

#include “sinx_ispc.h”

int N = 1024;
int terms = 5;
float* x = new float[N];
float* result = new float[N];

// initialize x here

// execute ISPC code
sinx(N, terms, x, result);

C++ code: main.cpp ISPC code: sinx.ispc

foreach: key ISPC language construct

▪ foreach declares parallel loop iterations

- Programmer says: these are the iterations the
instances in a gang must cooperatively perform

▪ ISPC implementation assigns iterations to program
instances in gang
- Current ISPC implementation will perform a

static interleaved assignment (but the
abstraction permits a different assignment)

Compute sin(x) using Taylor expansion: sin(x) = x - x3/3! + x5/5! - x7/7! + ...

 CMU 15-418/618, Fall 2023

▪ Single program, multiple data (SPMD) programming model
- Programmer “thinks”: running a gang is spawning programCount logical

instruction streams (each with a different value of programIndex)

- This is the programming abstraction

- Program is written in terms of this abstraction

▪ Single instruction, multiple data (SIMD) implementation
- ISPC compiler emits vector instructions (SSE4 or AVX) that carry out the logic

performed by a ISPC gang

- ISPC compiler handles mapping of conditional control flow to vector instructions
(by masking vector lanes, etc.)

▪ Semantics of ISPC can be tricky

- SPMD abstraction + uniform values
(allows implementation details to peak through abstraction a bit)

ISPC: abstraction vs. implementation

 CMU 15-418/618, Fall 2023

ISPC discussion: sum “reduction”

export uniform float sumall2(
 uniform int N,
 uniform float* x)
{
 uniform float sum;
 float partial = 0.0f;
 foreach (i = 0 ... N)
 {
 partial += x[i];
 }

 // from ISPC math library
 sum = reduce_add(partial);

 return sum;
}

export uniform float sumall1(
 uniform int N,
 uniform float* x)
{
 uniform float sum = 0.0f;
 foreach (i = 0 ... N)
 {
 sum += x[i];
 }

 return sum;
}

Compute the sum of all array elements in parallel

sum is of type uniform float (one copy of variable for all program instances)
x[i] is not a uniform expression (different value for each program instance)
Result: compile-time type error

Correct ISPC solution

 CMU 15-418/618, Fall 2023

ISPC discussion: sum “reduction”
export uniform float sumall2(
 uniform int N,
 uniform float* x)
{
 uniform float sum;
 float partial = 0.0f;
 foreach (i = 0 ... N)
 {
 partial += x[i];
 }

 // from ISPC math library
 sum = reduce_add(partial);

 return sum;
}

Compute the sum of all array elements in parallel
Each instance accumulates a private partial sum (no communication)

Partial sums are added together using the reduce_add() cross-
instance communication primitive. The result is the same total sum
for all program instances (reduce_add() returns a uniform float)

The ISPC code at right will execute in a manner similar to handwritten
C + AVX intrinsics implementation below. *

float sumall2(int N, float* x) {

 float tmp[8]; // assume 16-byte alignment
 __mm256 partial = _mm256_broadcast_ss(0.0f);

 for (int i=0; i<N; i+=8)
 partial = _mm256_add_ps(partial, _mm256_load_ps(&x[i]));

 _mm256_store_ps(tmp, partial);

 float sum = 0.f;
 for (int i=0; i<8; i++)
 sum += tmp[i];

 return sum;
}

* Self-test: If you understand why this
implementation complies with the
semantics of the ISPC gang abstraction,
then you’ve got good command of ISPC.

 CMU 15-418/618, Fall 2023

Recap: ISPC tasks
▪ The ISPC gang abstraction is implemented by SIMD

instructions on one core.

▪ So... all the code I’ve shown you in the previous slides would
have executed on only one of the four cores of the GHC
machines.

▪ ISPC contains another abstraction: a “task” that is used to
achieve multi-core execution. I’ll let you read up about that.

 CMU 15-418/618, Fall 2023

The second half of today’s lecture
▪ Three parallel programming models

- (1) Shared address space, (2) message passing, (3) data parallel

- That differ in communication abstractions presented to the programmer

- Programming models influence how programmers think when writing programs

▪ We’ll focus on differences in communication and cooperation

 CMU 15-418/618, Fall 2023

System layers: interface, implementation, interface, ...

Parallel Applications

Language or library
primitives/mechanisms

Abstractions for describing
concurrent, parallel, or

independent computation

Abstractions for describing
communication

Compiler and/or parallel runtime

Operating system

Hardware Architecture
(HW/SW boundary)

Micro-architecture (hardware implementation)

OS system call API

“Programming model”
(provides way of thinking about
the structure of programs)

Blue italic text: abstraction/concept
Red italic text: system interface
Black text: system implementation

 CMU 15-418/618, Fall 2023

pthread_create()

Example: expressing parallelism with pthreads
Parallel Application

Abstraction for concurrent computation: a thread

OS support: kernel thread management
System call API

Thread
Programming

model

pthread library implementation

x86-64
modern multi-core CPU

Blue italic text: abstraction/concept
Red italic text: system interface
Black text: system implementation

 CMU 15-418/618, Fall 2023

Example: expressing parallelism with ISPC
Parallel Applications

ISPC language (call ISPC function, foreach construct)

Abstractions for describing parallel computation:
1. For specifying simultaneous execution (true parallelism)

2. For specifying independent work (potentially parallel)

OS support

x86-64 (including AVX vector instructions)
single-core of CPU

System call API

ISPC
Programming

model

ISPC compiler

Note: This diagram is specific to the ISPC gang abstraction. ISPC also has the “task” language primitive for multi-core execution.
I don’t describe it here but it would be interesting to think about how that diagram would look

 CMU 15-418/618, Fall 2023

Three models of communication
(abstractions)

1. Shared address space

2. Message passing

3. Data parallel

 CMU 15-418/618, Fall 2023

Shared address space model
of communication

 CMU 15-418/618, Fall 2023

Shared address space model (abstraction)

int x = 0;
spawn_thread(foo, &x);
x = 1;

void foo(int* x) {
 while (x == 0) {}
 print x;
}

Thread 1: Thread 2:

Thread 1

x

Thread 2
Shared address space

▪ Threads communicate by reading/writing to shared variables
▪ Shared variables are like a big bulletin board

- Any thread can read or write to shared variables

Store to x

Load from x

(Pseudocode provided in a fake C-like language for brevity.)

(Communication operations shown in red)

 CMU 15-418/618, Fall 2023

Shared address space model (abstraction)

int x = 0;
Lock my_lock;

spawn_thread(foo, &x, &my_lock);

mylock.lock();
x++;
mylock.unlock();

void foo(int* x, lock* my_lock)
{
 my_lock->lock();
 x++;
 my_lock->unlock();

 print x;
}

Thread 1: Thread 2:

(Pseudocode provided in a fake C-like language for brevity.)

Synchronization primitives are also shared variables: e.g., locks

 CMU 15-418/618, Fall 2023

Shared address space model (abstraction)
▪ Threads communicate by:

- Reading/writing to shared variables
- Inter-thread communication is implicit in memory operations
- Thread 1 stores to X
- Later, thread 2 reads X (and observes update of value by thread 1)

- Manipulating synchronization primitives
- e.g., ensuring mutual exclusion via use of locks

▪ This is a natural extension of sequential programming
- In fact, all our discussions in class have assumed a shared address space so far!

▪ Helpful analogy: shared variables are like a big bulletin board
- Any thread can read or write to shared variables

 CMU 15-418/618, Fall 2023

HW implementation of a shared address space
Key idea: any processor can directly reference any memory location

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Processor
Local Cache

Interconnect

Memory I/O

Symmetric (shared-memory) multi-processor (SMP):
- Uniform memory access time: cost of accessing an uncached *

memory address is the same for all processors

“Dance-hall” organization

Processor Processor Processor Processor

Memory Memory

Processor

Processor

Processor

Processor

Memory

Processor Processor Processor Processor

Memory MemoryMemory Memory

Interconnect examples

Memory

Shared Bus

Multi-stage network

Crossbar

* caching introduces non-uniform access times, but we’ll talk about that later

 CMU 15-418/618, Fall 2023

Shared address space HW architectures

Intel Core i9 (8 cores)
(interconnect is a ring)

Commodity x86 examples

On chip network
Core 1

Core 3 Core 4

Memory Controller

Memory

AMD Ryzen (8 cores)

Core 2

AMD Ryzen Photo credit: https://arstechnica.com/information-technology/2017/02/amd-ryzen-arrives-march-2-8-cores-16-threads-from-just-329/

 CMU 15-418/618, Fall 2023

SUN Niagara 2 (UltraSPARC T2)

Memory

Memory

Memory

Memory

L2 cache

L2 cache

L2 cache

L2 cache

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Processor

Crossbar
Switch

Eight cores

Note area of crossbar: about die area of one core

 CMU 15-418/618, Fall 2023

Non-uniform memory access (NUMA)
All processors can access any memory location, but... the cost of memory access
(latency and/or bandwidth) is different for different processors

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Processor
Local Cache

Memory

Interconnect

▪ Problem with preserving uniform access time in a system: scalability
- GOOD: costs are uniform, BAD: they are uniformly bad (memory is uniformly far away)

▪ NUMA designs are more scalable
- Low latency and high bandwidth to local memory

▪ Cost is increased programmer effort for performance tuning
- Finding, exploiting locality is important to performance

(want most memory accesses to be to local memories)

 CMU 15-418/618, Fall 2023

Non-uniform memory access (NUMA)

On chip network
Core 1 Core 2

Core 3 Core 4

Memory Controller

Memory

Core 5 Core 6

Core 7 Core 8

Memory Controller

Memory

AMD Hyper-transport /
Intel QuickPath (QPI)

Example: latency to access address x is higher from cores 5-8 than cores 1-4

Example: modern dual-socket configuration

X

 CMU 15-418/618, Fall 2023

Summary: shared address space model

▪ Communication abstraction
- Threads read/write shared variables

- Threads manipulate synchronization primitives: locks, semaphors, etc.

- Logical extension of uniprocessor programming *

▪ Requires hardware support to implementation efficiently
- Any processor can load and store from any address (its shared address space!)

- Even with NUMA, costly to scale
(one of the reasons why supercomputers are expensive)

* But NUMA implementation requires reasoning about locality for performance

 CMU 15-418/618, Fall 2023

Message passing model of
communication

 CMU 15-418/618, Fall 2023

Message passing model (abstraction)

Thread 1 address space

Variable X

▪ Threads operate within their own private address spaces

▪ Threads communicate by sending/receiving messages
- send: specifies recipient, buffer to be transmitted, and optional message identifier (“tag”)
- receive: sender, specifies buffer to store data, and optional message identifier

- Sending messages is the only way to exchange data between threads 1 and 2

x

Thread 2 address space

Variable X

Y

(Communication operations shown in red)

Illustration adopted from Culler, Singh, Gupta

send(X, 2, my_msg_id)

semantics: send contexts of local
variable X as message to thread 2
and tag message with the id
“my_msg_id”

recv(Y, 1, my_msg_id)

semantics: receive message with id
“my_msg_id” from thread 1 and
store contents in local variable Y

 CMU 15-418/618, Fall 2023

Message passing (easy to implement)
▪ Popular software library: MPI (message passing interface)

▪ Hardware need not implement system-wide loads and stores to execute message
passing programs (need only be able to communicate messages)
- Can connect commodity systems together to form large parallel machine

(message passing is a programming model for clusters)

IBM Blue Gene/P Supercomputer

Cluster of workstations
(Infiniband network)

Image credit: IBM

 CMU 15-418/618, Fall 2023

The correspondence between programming
models and machine types is fuzzy
▪ Common to implement message passing abstractions on

machines that implement a shared address space in hardware
- “Sending message” = copying memory from message library buffers
- “Receiving message” = copy data from message library buffers

▪ Can implement shared address space abstraction on machines
that do not support it in HW (via less efficient SW solution)
- Mark all pages with shared variables as invalid

- Page-fault handler issues appropriate network requests

▪ Keep in mind: what is the programming model (abstractions
used to specify program)? and what is the HW implementation?

 CMU 15-418/618, Fall 2023

The data-parallel model

 CMU 15-418/618, Fall 2023

Recall: programming models impose
structure on programs
▪ Shared address space: very little structure

- All threads can read and write to all shared variables
- Pitfall: due to implementation: not all reads and writes have the same cost

(and that cost is not apparent in program text)

▪ Message passing: highly structured communication
- All communication occurs in the form of messages (can read program and see

where the communication is)

▪ Data-parallel: very rigid computation structure
- Programs perform same function on different data elements in a collection

 CMU 15-418/618, Fall 2023

Data-parallel model
▪ Historically: same operation on each element of an array

- Matched capabilities SIMD supercomputers of 80’s
- Connection Machine (CM-1, CM-2): thousands of processors, one instruction decode unit
- Cray supercomputers: vector processors

- add(A, B, n) ← this was one instruction on vectors A, B of length n

▪ Matlab is another good example: C = A + B
(A, B, and C are vectors of same length)

▪ Today: often takes form of SPMD programming
- map(function, collection)

- Where function is applied to each element of collection independently
- function may be a complicated sequence of logic (e.g., a loop body)
- Synchronization is implicit at the end of the map (map returns when function has been

applied to all elements of collection)

 CMU 15-418/618, Fall 2023

Data parallelism in ISPC

// ISPC code:
export void absolute_value(
 uniform int N,
 uniform float* x,
 uniform float* y)
{
 foreach (i = 0 ... N)
 {

 if (x[i] < 0)
 y[i] = -x[i];
 else
 y[i] = x[i];
 }

}

Think of loop body as function (from the
previous slide)

foreach construct is a map

Given this program, it is reasonable to think of the
program as mapping the loop body onto each
element of the arrays X and Y.

But if we want to be more precise: the collection is
not a first-class ISPC concept. It is implicitly defined
by how the program has implemented array
indexing logic.

(There is no operation in ISPC with the semantic:
“map this code over all elements of this array”)

// main C++ code:
const int N = 1024;
float* x = new float[N];
float* y = new float[N];

// initialize N elements of x here

absolute_value(N, x, y);

 CMU 15-418/618, Fall 2023

Data parallelism: a more “proper” way

const int N = 1024;

stream<float> x(N); // define collection
stream<float> y(N); // define collection

// initialize N elements of x here

// map function absolute_value onto
// streams (collections) x, y
absolute_value(x, y);

void absolute_value(float x, float y)
{
 if (x < 0)

 y = -x;
 else
 y = x;

}

Note: this is not ISPC syntax (more of our made-up syntax)

Data-parallelism expressed in this functional
form is sometimes referred to as the stream
programing model

Streams: collections of elements. Elements
can be processed independently

Kernels: side-effect-free functions. Operate
element-wise on collections

Think of kernel inputs, outputs, temporaries
for each invocation as a private address space

Main program:

“Kernel” definition:

 CMU 15-418/618, Fall 2023

Stream programming benefits
Functions really are side-effect free!
(cannot write a non-deterministic program)

Program data flow is known by compiler:

Inputs and outputs of each invocation are known in
advance: prefetching can be employed to hide
latency.

Producer-consumer locality is known in advance:
Implementation can be structured so outputs of first
kernel are immediately processed by second kernel.
(The values are stored in on-chip buffers/caches and
never written to memory! Saves bandwidth!)

These optimizations are responsibility of stream
program compiler. Requires global program
analysis.

foo bar
input outputtmp

const int N = 1024;
stream<float> input(N);
stream<float> output(N);
stream<float> tmp(N);

foo(input, tmp);
bar(tmp, output);

parallel_for(int i=0; i<N; i++)
{
 output[i] = bar(foo(input[x]));
}

 CMU 15-418/618, Fall 2023

Summary: data-parallel model
▪ Data-parallelism is about imposing rigid program structure to

facilitate simple programming and advanced optimizations

▪ Basic structure: map a function onto a large collection of data
- Functional: side-effect free execution
- No communication among distinct function invocations

(allow invocations to be scheduled in any order, including in parallel)

▪ In practice that’s how many simple programs work

▪ But... many modern performance-oriented data-parallel languages
do not strictly enforce this structure
- ISPC, OpenCL, CUDA, etc.

- They choose flexibility/familiarity of imperative C-style syntax over the safety of a more
functional form: it’s been their key to their adoption

- Opinion: sure, functional thinking is great, but programming systems sure should impose
structure to facilitate achieving high-performance implementations, not hinder them

 CMU 15-418/618, Fall 2023

Three parallel programming models
▪ Shared address space

- Communication is unstructured, implicit in loads and stores
- Natural way of programming, but can shoot yourself in the foot easily

- Program might be correct, but not perform well

▪ Message passing
- Structure all communication as messages
- Often harder to get first correct program than shared address space
- Structure often helpful in getting to first correct, scalable program

▪ Data parallel
- Structure computation as a big “map” over a collection
- Assumes a shared address space from which to load inputs/store results, but

model severely limits communication between iterations of the map
(goal: preserve independent processing of iterations)

- Modern embodiments encourage, but don’t enforce, this structure

 CMU 15-418/618, Fall 2023

Modern practice: mixed programming models
▪ Use shared address space programming within a multi-core node

of a cluster, use message passing between nodes
- Very, very common in practice
- Use convenience of shared address space where it can be implemented

efficiently (within a node), require explicit communication elsewhere

▪ Data-parallel-ish programming models support shared-memory
style synchronization primitives in kernels
- Permit limited forms of inter-iteration communication (e.g., CUDA, OpenCL)

▪ In a future lecture… CUDA/OpenCL use data-parallel model to
scale to many cores, but adopt shared-address space model
allowing threads running on the same core to communicate.

 CMU 15-418/618, Fall 2023

Summary
▪ Programming models provide a way to think about the

organization of parallel programs. They provide abstractions
that admit many possible implementations.

▪ Restrictions imposed by these abstractions are designed to
reflect realities of parallelization and communication costs
- Shared address space machines: hardware supports any processor accessing any address
- Messaging passing machines: may have hardware to accelerate message send/receive/buffering
- It is desirable to keep “abstraction distance” low so programs have predictable performance, but

want it high enough for code flexibility/portability

▪ In practice, you’ll need to be able to think in a variety of ways
- Modern machines provide different types of communication at different scales
- Different models fit the machine best at the various scales
- Optimization may require you to think about implementations, not just abstractions

