15-414: Bug Catching: Automated Program Verification

Lecture Notes on
Model Checking

Matt Fredrikson

Carnegie Mellon University
Lecture 17
Thursday, April 1, 2025

1 Introduction

In this lecture, we will show how we can use solvers to either verify that some program
is correct or find a counterexample that shows inputs to the program that may trigger
some bug. One such approach is called bounded model checking. There are several chal-
lenges when trying to verify programs, foremost among them the fact state-space of
programs may be infinite. Bounded model checking computes an underapproximation
of the reachable state-space by assuming a fixed computation depth in advance, and
treating paths within this depth limit symbolically to explore all possible states. While
this approach has its limitations, it can be effectively used in practice and it is a useful
technique to have in our collection of verification techniques.

Learning Goals.

In this lecture, you will learn:

¢ How bounded model checking verifies an under-approximation of a program’s
semantics against a contract given by a Hoare triple, by leveraging the strongest
postcondition introduced in Lecture 11.

* A key limitation of bounded model checking, i.e. the fact that it cannot prove the
absence of all bugs, can be partially mitigated with unwinding assertions.

* How to formalize specifications of correctness that involve time and sequencing
as Linear Temporal Logic (LTL).

http://www.cs.cmu.edu/~15414/s22

L17.2 Model Checking

2 Bounded Model Checking

Bounded Model Checking computes an underapproximation of a program’s semantics
by assuming that all loops in the program are unrolled to some fixed, pre-determined
finite depth k. There are two useful ways to think about this operation. The first, which
might have occurred to you naturally before having taken this course, is to transform
the original program, which may contain loops, into a loop-free program using the
bound k. Recall from a much earlier lecture the following axiom, which allows us to
replace a loop with a conditional statement, within which is a copy of the original loop.

([unwind]) [while(Q)a]P <> [if(Q) {c;while(Q) a}]P

The axiom tells us that it is perfectly acceptable when reasoning about a safety prop-
erty to replace while statements with if statements in this way. To perform bounded
model checking, we first apply it to each loop in the program up to k times. When
we are finished, we replace any remaining loops with skip statements (or equivalently,
7Q).

Let’s see an example. Consider the following program, which doesn’t do anything
useful but is simple enough to illustrate the key ideas here.

1 i := N;
2 while (0 \le x $<$ N) {
3 i ::=1i - 1;
4 X := x + 1;
}

Suppose that we want to check that Oterminated — 0 < i holds, up to abound of k = 2.
We begin by applying the axiom twice to the loop. When we stop, we replace the
remaining loop with an empty statement.

1 i := N;
if (0 $\1le$ x $<$ N) {
i =1 - 1;
4 X = x + 1;
if (0 \le x $<$ N) {
6 i :=1i - 1;
7 X = x + 1;
8 ¥
9 }

With all of the loops removed from the program, verification is straightforward using
the deductive techniques covered earlier in the semester: the formula we need to prove
is just [a]0 < i. In particular, we can apply other terminal axioms repeatedly until we
are left with a term containing no modalities and literals involving only integer op-
erations. In the current example, we have the following after applying the necessary
steps.

(~(0<z<N)—=0<N)
0<z<N-—->-(0<z4+1<N)—-0<N-1)

VAN
AN (0<z<N-=>0<z4+1<N-—->0<N-2)

15-414 LECTURE NOTES MATT FREDRIKSON

Model Checking L17.3

If this formula is valid (which it is not), then the original property holds. Notice that
there are three clauses in this formula, one for each possible path through the program
after unwinding at £ = 2. What bounded model checking essentially does is to “sym-
bolically” evaluate each path through the program up to the unwinding depth. Each
path corresponds to a conjunctive clause so that if the formula is not valid, there will be
a clause that the model checker can identify as being at fault. The corresponding path
gives a counterexample and a satisfying solution to its negation a valuation of the input
variables that will violate the property.

In the example above, we see that the first clause is already invalid. We negate it to
look for a satisfying solution:

“(7(0<z<N)=0<N)< (~(0<z<N)A—-(0<N))

A satisfying solution to the above is ¢ = 0, N = —1. Notice that if we run the original
program starting in a state that matches this assignment, then it terminates immediately
without executing the loop, leaving ¢ = —1.

Limitations Because bounded model checking is an underapproximation, it might
not consider some traces that are in the trace semantics of the program. This means
that if it does not find a property violation, we cannot necessarily conclude that the
program is bug-free. However, in some cases, we can. Consider the following variation
of the above example.

1 i = 3;
2 while (0 \le x $<$ 3) {
3 i =1 - 1;
4 X = x + 1;
}

While a bound of £ = 2 is insufficient to conclude that there are no bugs in this pro-
gram, setting k = 3 is in fact sufficient. Furthermore, we can modify the unwinding
process slightly so that if no bugs are found up to a particular depth, and we’ve chosen
a sufficiently large enough k, we will conclude as much. Likewise, if no bugs are found
but we chose an inadequately large k, we’ll know that to be the case as well.

The approach uses what are called unwinding assertions. Whereas before when we
finished applying, we replaced the remaining loop with an empty statement, now we
will replace it with a statement that violates safety if the unwinding is insufficient. In
the above example, we would have the following for k£ = 2.

1 i := 3;

2 if (0 $\1le$ x $<$ 3) {

i :=1i - 1;
X := x + 1;
if (0 $\1le$ x $<$ 3) {

i =1i - 1;

X := x + 1;

8 assert ($\1not$ (0 $\1le$ x $<$ 3));
9
10 } ’

N o U oA W

15-414 LECTURE NOTES MATT FREDRIKSON

L17.4 Model Checking

Although we haven’t talked about assertions before, we can model them using existing
constructs and safety properties. To check that an assertion isn’t violated, we replace
the assert statement with a corresponding conditional, which makes an assignment to
a special variable whenever its condition is true.

1 error := 0;

2 i = 3;

if (0 $\1le$ x $<$ 3) {

4 i :=1i - 1;

5 X := x + 1;

6 if (0 $\1le$ x $<$ 3) {

7 i =1 -1;

8 x = x + 1;

9 if (0 $\1le$ x $<$ 3) error := 1;

10 ¥

11 }
We can then check the validity of the formula [a]error = 0. In this case, the formula
would be invalid, because x is at most 2 on the path containing the assert. This means
that the unwinding assertion fails to hold, and so we should not conclude that the

program is bug-free by unwinding up to k£ = 2.

3 Linear Temporal Logic

Bounded model checking considers an underapproximation of all possible traces of a
program. In particular, not all possible traces will appear in the approximation, but all
those that do appear are certain to be in the true trace semantics. In principle Bounded
Model Checking (BMC) can be used to verify arbitrary properties, but it is most com-
monly used to check reachability invariants of the form Oterminated — P, and we will
focus on this case for the remainder of these lecture notes.

3.1 Trace Semantics (Extra, Optional)

Let first formalize the notion of trace semantics of a program.

Definition 1 (Trace semantics of programs). The trace semantics, 7(«), of a program «, is
the set of all its possible traces and is defined inductively as follows:

1. 7(z:=e) = {(w,v) : v=wexcept that v(z) = w[e] for w € S}

2. 7(7Q) ={(w) : wE Q}U{(w,A) : wi~Q}

5. 7(1£(Q)aelse) = {0 € m(a) : a0 = Q}U{o € 7(8) : o0 i Q)
4. 7(a;8) ={ooc : cer(a),seT(B)};

the composition of o = (09,01, 02,...) and ¢ = (<p,<1,2, ...) iS

(00y--+,0n,51,%2,...) if o terminates in o, and o,, = ¢
cog: =<0 if o does not terminate
not defined otherwise

15-414 LECTURE NOTES MATT FREDRIKSON

Model Checking L17.5

5. 7(while(Q) a) ={c® ocMo-..00(™ : for somen > 0such that forall 0 < i < n:
D the loop condition is true a(()i) = Qand @ 0 € [a] and @) o™ either does not
terminate or it terminates in aﬁ,?) and 07(77;”) K~ @Q in the end}
U{o@ocMWoc@o... : foralliecN: (D U(()i) EQand @ o € [a]}

Ui(w) : wiE @}

That s, the loop either runs a nonzero finite number of times with the last iteration
either terminating or running forever, or the loop itself repeats infinitely often and
never stops, or the loop does not even run a single time.

def def def
6. T(a*) = U, ey T(a™) where a1 £ (a;a) forn > 1,and o' £ aand a® E (?true).

3.2 LTL

Now that we have a set of traces such as the ones 7(«) generated by a program a, we
have more temporal information about the sequence of states that happened during
the run of the program. That enables us to talk more about the way how truth-values
change over time along such a trace.

Definition 2 (LTL). The formulas of linear temporal logic (LTL) with atomic proposi-
tions p are defined by the following grammar:

P,Qu:=p|-P|PAQ|XP|OP|OP|UPQ

The formula 0P means that P is always true in the future. The formula ¢ P means
that P is sometimes true in the future, meaning at least at one point. The formula X P
means that P is true in the next state. And the formula U PQ means that P is true until
@ is true (which also will be true at some point).

The suffix of a trace o starting at step k € N is denoted ¢* and only defined if the
trace has at least length k. That is

k
(0_07 01,02,...,0k—1,0k, Jk+17 0—k‘+27 .) - (O—ka Uk‘+17 Jk+27 ..)

In particular ¢V is the same as 0. Also (0¢) o 0!

that o! is defined.

= o if the trace has at least length 1 so

Definition 3. The truth of LTL formulas in a trace o is defined inductively as follows:
1. o [= piff og = p for atomic propositions p provided that og # A
2. 0 E-Piff o £ P,i.e. itis not the case that o = P
3. o =PAQiffc =EPando = Q
4. 0 = XPiffol = P
5. 0 = 0OPiff o' = Pforalli >0
6. o = OPiff o' = P for somei > 0

15-414 LECTURE NOTES MATT FREDRIKSON

L17.6 Model Checking

7. o = UPQ iff thereisani > O such that o’ = Q and ¢/ = P forall0 < j <

In all cases, the truth-value of a formula is, of course, only defined if the respective
suffixes of the traces are defined.

For example, X P only has a truth-value in trace o if ¢! is defined, which means that
the trace o has length 1 (recall that this means it has at least 1+1 states). So X P is neither
true or false but simply meaningless in a trace such as o that does not actually have a
next state. Likewise, Xp is meaningful (and either true or false depending on whether
p is true in o07) in a trace o0 = (0, 01), but XXp is not meaningful in the same trace
because it’s not long enough to have a successor of a successor.

Note that the meaning of the box and diamond modalities of LTL is quite analogous
to the meaning that the box and diamond modalities already have in dynamic logic.
The only difference is that dynamic logic modalities range over the runs of a concrete
program while the modalities of LTL range over time (along a fixed trace of something).
This is not a coincidence. Both are versions of modal logics, which differ in terms of
what the box and diamond modalities range over but are otherwise built similarly.

For the cases XP,00P, O P,UPQ It is, of course, very important to retain the entire
suffix of the trace for the semantics (not just a single state) in case the subformulas P
and () themselves mention further temporal operators. For example, LTL formula

aopP

expresses that P is true infinitely often when referring to an infinite trace. On a finite
trace, it merely means that P is true in the last (non-failure) state.
The LTL formula
oapP

expresses that P is eventually true all the time (so is true almost always, so except at
finitely many exception states) when referring to an infinite trace. On a finite trace, it
also merely means that P is true in the last (non-failure) state.

4 LTL Formulas on Program Traces

The following very clever program solves the issue of subtracting from negative num-
bers by first turning them into positive numbers and then adding, while ultimately
flipping the sign again.

=x+ T

8 8 8

This program does correctly subtract 7 from a negative number as witnesses by a
corresponding proof of the following dynamic logic formula:

r=x0— [z:=—mjx:=rx+Tx:=—x]jr=29—7

15-414 LECTURE NOTES MATT FREDRIKSON

Model Checking L17.7

This formula means that whenever x, equals the initial value of variable x then after
running the program, the resulting value of = will be the result of subtracting 7 from
xo, which, since it didn’t change, still is the initial value of z. The program also satisfies
the property that if x is initially negative then « is finally negative:

r<0—=[z:=—mx:=0+T;2:=—x]x <0
But it does not satisfy that z is negative always at all times while running the program,
because the whole point is that the first assignhment flips the sign of x into a positive
number. In fact, all traces of this program are of the following form:

—w(x)

—e(e) W@+ (@) 47))

T(r:=—zx:=x+Tx:=—2) = {(w,w Wy, - : wis any state}

Consequently, if o € 7(x := —z;2:=x + 7; 2 := —x) is a trace of this program starting
in an initial state oy with negative initial value of = so oy(z) < 0, then the LTL formula
O(x < 0) is not true for it even if it is true initially and in the end. Indeed, all traces
o € 7(z:=—x;2:=x + 7;x := —x) of the program satisfy:

oEr<0—0(x<0)
That is, the following condition is false for o:

if x < 0 is true (initially, because there’s no temporal operator on the left
hand side of the implication), then = < 0 is true always in the future (of o).

But what is, indeed, true for all traces o of the program is:
ocEz<0—0(x#0)

Thatis, if x starts negative then it will always be nonzero at every point in time through-
out the entire trace o.

5 Summary

¢ A traceis either a finite sequence of states of a given length or an infinite sequence
of states;

A trace terminates iff it is finite and its last state is not a failure state (A);

The trace semantics of a program « (7(«)) is the set of all its possible traces;

¢ Linear temporal logic is defined by the following grammar:
P,Q:=p|-P|PAQ|XP|OP|OP|UPQ
— The formula 0P means that P is always true in the future;

— The formula ¢ P means that P is sometimes true in the future, meaning at
least at one point;

— The formula X P means that P is true in the next state;

— The formula U P(Q means that P is true until @ is true (which also will be
true at some point).

15-414 LECTURE NOTES MATT FREDRIKSON

	Introduction
	Bounded Model Checking
	Linear Temporal Logic
	Trace Semantics (Extra, Optional)
	LTL

	LTL Formulas on Program Traces
	Summary

