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1 Introduction

In the previous lecture we studied a decision procedure a first-order theory: equality
with uninterpreted functions (EUF). As you might expect, in practice we typically want
to reason about more than one theory at a time. For example, we might want to reason
about the theory of integers TZand the theory of equality with uninterpreted functions
TE.

In this lecture we will study how to combine first-order theories, and in particular
how to use independent theory solvers to decide the satisfiability of a formula that is
built from symbols from multiple theories. For now, we will continue assuming that
the theories are conjunctive and quantifier-free, but we will relax this assumption in
the next lecture. We will study the Nelson-Oppen procedure for combining theories,
which is the basis for most modern SMT solvers, and see how it “glues” independent
theory solvers together by exploiting the stability and convexity properties of the theo-
ries involved.

Learning Goals

1. Combined first-order theories.

2. The Nelson-Oppen procedure for combining theories.

3. Stability and convexity properties of first-order theories.

2 Review: First-Order Theories

A first-order theory T is defined by the following components.
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• It’s signature Σ is a set of constant, function, and predicate symbols.

• It’s set of axioms A is a set of closed first-order logic formulae in which only
constant, function, and predicate symbols of Σ appear.

Having defined a theory’s signature and axioms, we can reason about the same type
of properties related to the semantics of a formula as we have been so far, namely va-
lidity and satisfiability.

Definition 1 (T -valid). A Σ-formula P is valid in the theory T (T -valid), if every model
M that satisfies the axioms of T (i.e., M |= A for every A ∈ A) also satisfies P (i.e.,
M |= P ).

Definition 2 (T -satisfiable). Let T be a Σ-theory. A Σ-formula P is T -satisfiable if there
exists a model M such that M |= A and M |= P .

Definition 3 (T -decidable). A theory T is decidable if T |= P is decidable for every
Σ-formula. That is, there exists an algorithm that always terminate with “yes” if P is
T -valid or with “no” if P is T -invalid.

For example, the theory of equality with uninterpreted functions TEhas a signature
that consists of a single binary predicate =, and all possible constant (a, b, c, x, y, z, . . .)
and function (f, g, h, . . .) symbols:

ΣE : {=, a, b, c, . . . , f, g, h, . . .}

The axioms of TEdefine the usual meaning of equality (reflexivity, symmetry, and tran-
sitivity), as well as functional congruence.

1. ∀x.x = x (reflexivity)

2. ∀x, y.x = y → y = x (symmetry)

3. ∀x, y, z.x = y ∧ y = z → x = z (transitivity)

4. ∀x, y.x = y → f(x̄) = f(ȳ) (congruence)

3 Theory Combination

Now we turn towards generalizing the DPLL(T ) approach to handle formulas that have
symbols from more than one theory.

Definition 4 (Theory combination). Given two theories T1 and T2 with signatures Σ1

and Σ2, respectively, the theory combination T1 ⊕ T2 is a (Σ1 ∪ Σ2)-theory defined by
the axiom set T1 ∪ T2.

Definition 5 (The theory combination problem). Let P be a Σ1∪Σ2 formula. The theory
combination problem is to decide whether P is T1⊕T2-valid. Equivalently, the problem
is to decide whether the following holds: T1 ⊕ T2 |= P .
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Given a Σ-formula P in TEand a Σ-formula ψ in TZcan we check the satisfiability of
P∪ψ by checking the satisfiability of P andψ independently and combining the results?
No! This is not a sound procedure for the theory combination problem. Consider the
following counterexample:

P = f(x) ̸= f(y)

ψ = x+ y = 0 ∧ x = 0

Both P and ψ are satisfiable but P implies that x ̸= y and ψ implies that x = y,
therefore their combination is not satisfiable!

4 The Nelson-Oppen Combination Procedure

The Nelson-Oppen combination procedure solves the theory combination problem for
theories T1 and T2, as long as those theories satisfy a few properties.

• Both theories T1 and T2 are quantifier-free (conjunctive) fragments.

• Equality (=) is the only symbol in the intersection of their signatures.

• Both theories have constants that are interpreted over an infinite domain.

The motivation for the first two properties should be clear by intuition. As we saw
in the previous lecture, working with conjunctive quantifier-free formulas removes the
possibility of having to do case analysis. The fact that = is the only symbol shared
between T1 and T2 avoids “overloading” of symbols that might introduce spurious
relationships between terms, and as we will see, both theories must have equality in
order for the approach to work.

The third property might not be as obvious. To make sure that we understand what
this restriction means, consider the theory Ta,b with signature ΣT : {a, b,=} where both
a and b are constants. Suppose it has a single axiom:

∀x.x = a ∨ x = b

This axiom says that every model of the theory must map variables to either a or b.
Thus, there is no way to interpret the theory over an infinite domain without violating
this axiom. On the other hand, most of the other theories that we have studied, with
the exception of bit vector arithmetic, are interpreted over an infinite domain.

But why would this matter for a decision procedure? This has to do with the way
that the Nelson-Oppen procedure first isolates theories, and then coordinates between
them by introducing new equalities. The technique follows the steps below, for a given
formula P over theories T1, . . . , Tn.

1. Purification: Partition the literals of P into new conjunctive formulas P1, . . . , Pn,
where Pi contains only symbols from Ti.
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2. Theory solving: Apply the decision procedure for Ti to Pi. If one of the formulas
is unsatisfiable, then so is P .

3. Equality propagation: As illustrated in the example earlier, the fact that each Pi

is independently satisfiable does not mean that their combination in P is. This
step gradually adds more information to each Pi by searching for equalities that
are implied by the other Pj formulas.

a) If there exists i, j such that Pi implies an equality between variables of P that
is not implied by Pj , add the equality to Pj and return to step 2.

b) Otherwise, if there are no such equalities to add, then P is satisfiable.

Returning to the question of why the theories must be interpreted over an infinite
domain, suppose that we have a formula over Ta,b ∪ TE, where Ta,b is the toy theory
with two constants and equality from earlier:

w = x ∧ f(x) ̸= f(y) ∧ f(y) ̸= f(z) ∧ f(x) ̸= f(z)

Then after purification, the Ta,b formula will just be w = x, and the TE formula will
have the rest of the (negative) literals. Equality propogation will not add anything to
either formula, because the only things that could be implied are negated equalities, i.e.,
congruence from EUF implies that x ̸= y, y ̸= z, and x ̸= z. Nelson-Oppen does not
propagate negated equalities, so step 3b will apply, and return sat. This is incorrect,
because the axiom from Ta,b requires w, x, y, and z to be assigned to either the constant
a or b, which is not consistent with the above formula.

This example should illustrate the need for the third requirement given above. Note
that researchers have explored ways of combining finite-domain theories, and it is often
possible to do so in practice. Tinelli and Zarba proposed an approach that attempts to
compute a lower bound on the size of the domain that a formula must be satisfied in.
This bound can be shared between theories during equality propagation, and if the
bound ever contradicts the axioms of a given theory, then the corresponding solver can
return unsat. However, it is not always possible to compute this bound, and if it is not
sufficiently tight, then the result might still be incorrect.

Example 6. Now we’ll see how the technique works on an example from the theory of
real arithmetic combined with EUF.

ϕ = f(f(x)− f(y)) ̸= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

For the purification step, we look at any term containing symbols from more than one
theory. For example, f(x) − f(y) contains subtraction from real arithmetic, and func-
tion application from EUF. To separate this term into pure components, we equate the
“alien” subexpressions f(x) and f(y) with fresh variables, and replace their occurence
in the subtraction term with the new variables:

v1 = f(x) ∧ v2 = f(y) ∧ f(v1 − v2) ̸= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z
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There is still one impure term, f(v1 − v2), so we equate v1 − v2 with the fresh variable
v3, and subustitute:

v1 = f(x) ∧ v2 = f(y) ∧ v3 = v1 − v2 ∧ f(v3) ̸= f(z) ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z

Now the formula is pure, and can be easily separated into a formula PR containing only
real arithmetic, and a formula PE containing only equality and uninterpreted functions.

PR ≡ v3 = v1 − v2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z
PE ≡ v1 = f(x) ∧ v2 = f(y) ∧ f(v3) ̸= f(z)

Moving on, the next step is to look for implied equalities that are not already present in
either formula. There are several opportunities.

• Together, x ≤ y, y + z ≤ x, and 0 ≤ z imply that both x = y and z = 0.

• On the EUF side, once x = y has been added, then f(x) = f(y) by congruence, so
v1 = v2.

• Once v1 = v2 is added to PR, it implies that v3 = z.

After adding these implied equalities, we have left with the following formulas.

PR ≡ v3 = v1 − v2 ∧ x ≤ y ∧ y + z ≤ x ∧ 0 ≤ z ∧ x = y ∧ z = 0 ∧ v1 = v2 ∧ v3 = z
PE ≡ v1 = f(x) ∧ v2 = f(y) ∧ f(v3) ̸= f(z) ∧ x = y ∧ v1 = v2 ∧ v3 = z

Now we see that PE is not satisfiable, because v3 = z and f(v3) ̸= f(z) is not consistent
with the congruence axiom.

4.1 Convexity

Before concluding, we point out that the procedure described in this lecture is only
valid for convex theories.

Definition 7 (Convex theory). A Σ-theory T is convex if for every conjunctive Σ-formula
P if and only if whenever P implies a finite disjunction of equalities:

P →
n∨

i=1

xi = yi

Then it must also imply at least one of those equalities on its own:

P → xi = yi for some i ∈ {1, · · · , n}

An example of a nonconvex theory is the theory of integers (TZ). For instance, while
the following is valid:

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 → (x3 = x1 ∨ x3 = x2)
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Neither of the isolated cases are:

x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 → x3 = x1
x1 = 1 ∧ x2 = 2 ∧ 1 ≤ x3 ∧ x3 ≤ 2 → x3 = x2

Consider the following formula defined over TZand and TE:

P = 1 ≤ x ∧ x ≤ 2 ∧ f(x) ̸= f(1) ∧ f(x) ̸= f(2)

This formula is clearly unsatisfiable, but Nelson-Oppen will return sat, for reasons very
similar to the example discussed earlier with Ta,b.

In practice, SMT solvers use an extended version of Nelson-Oppen that propagates
implied disjunctions of equalities. The details of this extension are beyond the scope of
the lecture, but note that adding additional disjunctions to a formula will force DPLL(T )
to solve them by case-splitting, which can quickly become expensive. So, while it is
possible to combine non-convex theories with others, one should be aware that doing
so may make the solver’s job intractible, and explore other options.
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